Suppr超能文献

个体化医学的预先基因分型:利用基因组数据制定正确的药物、正确的剂量、正确的治疗方案以实现个体化治疗。

Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol.

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN.

Department of Health Sciences Research, Mayo Clinic, Rochester, MN.

出版信息

Mayo Clin Proc. 2014 Jan;89(1):25-33. doi: 10.1016/j.mayocp.2013.10.021.

Abstract

OBJECTIVE

To report the design and implementation of the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment protocol that was developed to test the concept that prescribers can deliver genome-guided therapy at the point of care by using preemptive pharmacogenomics (PGx) data and clinical decision support (CDS) integrated into the electronic medical record (EMR).

PATIENTS AND METHODS

We used a multivariate prediction model to identify patients with a high risk of initiating statin therapy within 3 years. The model was used to target a study cohort most likely to benefit from preemptive PGx testing among the Mayo Clinic Biobank participants, with a recruitment goal of 1000 patients. We used a Cox proportional hazards model with variables selected through the Lasso shrinkage method. An operational CDS model was adapted to implement PGx rules within the EMR.

RESULTS

The prediction model included age, sex, race, and 6 chronic diseases categorized by the Clinical Classifications Software for International Classification of Diseases, Ninth Revision codes (dyslipidemia, diabetes, peripheral atherosclerosis, disease of the blood-forming organs, coronary atherosclerosis and other heart diseases, and hypertension). Of the 2000 Biobank participants invited, 1013 (51%) provided blood samples, 256 (13%) declined participation, 555 (28%) did not respond, and 176 (9%) consented but did not provide a blood sample within the recruitment window (October 4, 2012, through March 20, 2013). Preemptive PGx testing included CYP2D6 genotyping and targeted sequencing of 84 PGx genes. Synchronous real-time CDS was integrated into the EMR and flagged potential patient-specific drug-gene interactions and provided therapeutic guidance.

CONCLUSION

This translational project provides an opportunity to begin to evaluate the impact of preemptive sequencing and EMR-driven genome-guided therapy. These interventions will improve understanding and implementation of genomic data in clinical practice.

摘要

目的

报告开发的“正确药物、正确剂量、正确时间——利用基因组数据实现个体化治疗方案”的设计和实施情况,该方案旨在检验这样一个概念,即临床医生可以通过在护理点使用预先的药物基因组学(PGx)数据和临床决策支持(CDS),将其整合到电子病历(EMR)中,提供基于基因组的治疗。

患者和方法

我们使用多变量预测模型来识别 3 年内开始他汀类药物治疗的高风险患者。该模型用于确定梅奥诊所生物库参与者中最有可能受益于预先 PGx 检测的研究队列,招募目标为 1000 名患者。我们使用了通过套索收缩法选择变量的 Cox 比例风险模型。适应性操作 CDS 模型在 EMR 中实施 PGx 规则。

结果

预测模型包括年龄、性别、种族和按临床分类软件(Clinical Classifications Software)的国际疾病分类,第九版(ICD-9)代码分类的 6 种慢性疾病(血脂异常、糖尿病、外周动脉粥样硬化、血液形成器官疾病、冠状动脉粥样硬化和其他心脏病以及高血压)。在受邀的 2000 名生物库参与者中,1013 名(51%)提供了血液样本,256 名(13%)拒绝参与,555 名(28%)未回复,176 名(9%)同意但在招募窗口(2012 年 10 月 4 日至 2013 年 3 月 20 日)内未提供血液样本。预先的 PGx 检测包括 CYP2D6 基因分型和 84 个 PGx 基因的靶向测序。同步实时 CDS 被整合到 EMR 中,并标记潜在的患者特异性药物-基因相互作用,并提供治疗指导。

结论

该转化项目为开始评估预先测序和 EMR 驱动的基因组指导治疗的影响提供了机会。这些干预措施将改善对临床实践中基因组数据的理解和实施。

相似文献

7
Pharmacogenomics Clinical Annotation Tool (PharmCAT).药物基因组学临床注释工具(PharmCAT)。
Clin Pharmacol Ther. 2020 Jan;107(1):203-210. doi: 10.1002/cpt.1568. Epub 2019 Sep 17.

引用本文的文献

本文引用的文献

7
Genomics and drug response.基因组学与药物反应。
N Engl J Med. 2011 Mar 24;364(12):1144-53. doi: 10.1056/NEJMra1010600.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验