Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
ACS Nano. 2016 Jan 26;10(1):1363-8. doi: 10.1021/acsnano.5b06770. Epub 2015 Dec 7.
The nucleation of DNA-functionalized nanoparticle superlattices is observed to exhibit a temperature hysteresis between melting (superlattice dissociation) and freezing (particle association) transitions that allows for the study of nucleation thermodynamics. Through detailed study of the assembly of these particles, which can be considered programmable atom equivalents (PAEs), we identify this hysteresis as critical undercooling-a phase transition phenomenon related to a thermodynamic barrier to nucleation. The separable nature of the DNA bonding elements and nanoparticle core enables the PAE platform to pose unique questions about the microscopic dependencies of critical undercooling and, ultimately, to control the nucleation pathway. Specifically, we find that the undercooling required to initiate nucleation increases as the nanoparticle coordination number increases (number of particles to which a single particle can bind).
DNA 功能化纳米粒子超晶格的成核被观察到在熔融(超晶格解离)和冷冻(颗粒聚集)转变之间表现出温度滞后,这允许研究成核热力学。通过对这些可以被视为可编程原子等效物(PAE)的粒子的组装进行详细研究,我们将这种滞后现象确定为过冷临界——与成核热力学障碍有关的相变现象。DNA 键合元素和纳米颗粒核心的可分离性质使 PAE 平台能够提出关于过冷临界微观依赖性的独特问题,并最终控制成核途径。具体来说,我们发现,随着纳米颗粒配位数的增加(单个颗粒可以结合的颗粒数量),引发成核所需的过冷度也增加。