Park Daniel J, Ku Jessie C, Sun Lin, Lethiec Clotilde M, Stern Nathaniel P, Schatz George C, Mirkin Chad A
Department of Chemistry, Northwestern University, Evanston, IL 60208.
International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):457-461. doi: 10.1073/pnas.1619802114. Epub 2017 Jan 4.
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye-nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon-excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.
由包含用DNA功能化的金纳米颗粒的可编程原子等效物制成的三维等离子体超晶格微腔,被用作研究定向光发射的试验台。DNA引导的纳米颗粒胶体结晶允许形成微米级的单晶体心立方金纳米颗粒超晶格,染料分子以菱形十二面体的形式耦合到连接颗粒的DNA链上。封装在二氧化硅中可以创建坚固的结构,使等离子体活性颗粒和染料分子固定在空间中。在微米尺度上,各向异性的菱形十二面体晶体习性与光子模式耦合,产生定向光发射。在纳米尺度上,通过将染料分子耦合到DNA颗粒连接链的特定位点,可以精细调节染料偶极子与表面等离子体之间的相互作用,从而调节染料-纳米颗粒的距离(研究了三个不同位置)。以亚纳米精度控制染料位置的能力使人们能够系统地调节等离子体激发相互作用强度和衰减寿命,其结果得到了从纳米到微米长度尺度的电动力学计算的支持。在这种超晶格微腔内控制表面等离子体/激子相互作用的独特能力将推动涉及量子光学、等离子体激光物理、强耦合和非线性现象的研究。