Suppr超能文献

秀丽隐杆线虫中DCC和H4K20me1对X染色体剂量补偿的发育动态变化

Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans.

作者信息

Kramer Maxwell, Kranz Anna-Lena, Su Amanda, Winterkorn Lara H, Albritton Sarah Elizabeth, Ercan Sevinc

机构信息

Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America.

出版信息

PLoS Genet. 2015 Dec 7;11(12):e1005698. doi: 10.1371/journal.pgen.1005698. eCollection 2015 Dec.

Abstract

In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.

摘要

在秀丽隐杆线虫中,剂量补偿复合物(DCC)特异性结合并抑制雌雄同体两条X染色体的转录。DCC由一个与多种蛋白质相互作用的X染色体特异性凝聚素复合物组成。在胚胎发育过程中,DCC在40细胞期左右开始定位于X染色体,随后在100细胞期到逗号期之间H4K20me1在X染色体上富集。在这里,我们通过对多个发育时间点进行mRNA测序和ChIP测序分析,研究了X染色体在不同性别间的剂量补偿,以及dpy - 27(凝聚素亚基)、dpy - 21(非凝聚素DCC成员)、set - 1(H4K20单甲基化酶)和set - 4(H4K20二/三甲基化酶)在X染色体抑制中的作用。我们发现,DCC在40细胞期开始抑制X染色体,但在胚胎发育的逗号期之前,雌雄同体中X连锁转录本水平仍显著高于雄性。Dpy - 27和dpy - 21在整个发育过程中对于X染色体抑制都是必需的,但特别是在早期胚胎中,dpy - 27和dpy - 21突变产生了不同的表达变化,表明dpy - 21具有独立于DCC的作用。我们之前推测,DCC通过降低X染色体上set - 4的活性来增加H4K20me1。因此,在set - 4突变体中,与X染色体相比,常染色体上H4K20me1增加得更多,使X染色体和常染色体之间的H4K20me1水平达到平衡。常染色体上H4K20me1的增加导致了轻微的抑制,从而产生了X染色体去抑制的相对效应。与set - 4突变体中X染色体和常染色体之间H4K20me1水平的平衡相比,set - 1突变体中H4K20me1的缺失表现出更大程度的X染色体去抑制,这表明H4K20me1水平很重要,但X染色体与常染色体之间H4K20me1的平衡对X染色体抑制的贡献较小。因此,H4K20me1不仅是DCC的下游效应物[已修正]。总之,X染色体剂量补偿在早期胚胎中随着DCC定位于X染色体而开始,并在后期胚胎发育中通过H4K20me1得到加强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b5/4671695/6a18e2da6e17/pgen.1005698.g001.jpg

相似文献

1
Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans.
PLoS Genet. 2015 Dec 7;11(12):e1005698. doi: 10.1371/journal.pgen.1005698. eCollection 2015 Dec.
2
H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation.
PLoS Genet. 2012 Sep;8(9):e1002933. doi: 10.1371/journal.pgen.1002933. Epub 2012 Sep 13.
4
Regulation of DCC localization by HTZ-1/H2A.Z and DPY-30 does not correlate with H3K4 methylation levels.
PLoS One. 2011;6(10):e25973. doi: 10.1371/journal.pone.0025973. Epub 2011 Oct 5.
5
Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase.
Cell. 2017 Sep 21;171(1):85-102.e23. doi: 10.1016/j.cell.2017.07.041. Epub 2017 Aug 31.
6
The onset of C. elegans dosage compensation is linked to the loss of developmental plasticity.
Dev Biol. 2014 Jan 15;385(2):279-90. doi: 10.1016/j.ydbio.2013.11.001. Epub 2013 Nov 16.
8
Caenorhabditis elegans dosage compensation regulates histone H4 chromatin state on X chromosomes.
Mol Cell Biol. 2012 May;32(9):1710-9. doi: 10.1128/MCB.06546-11. Epub 2012 Mar 5.
9
Condensin-driven remodelling of X chromosome topology during dosage compensation.
Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.
10
The histone H4 lysine 20 demethylase DPY-21 regulates the dynamics of condensin DC binding.
J Cell Sci. 2022 Jan 15;135(2). doi: 10.1242/jcs.258818. Epub 2022 Jan 26.

引用本文的文献

1
Condensin IDC, DPY-21, and CEC-4 maintain X chromosome repression in C. elegans.
PLoS Genet. 2025 Apr 9;21(4):e1011247. doi: 10.1371/journal.pgen.1011247. eCollection 2025 Apr.
3
Dynamics of X chromosome hyper-expression and inactivation in male tissues during stick insect development.
PLoS Genet. 2025 Mar 10;21(3):e1011615. doi: 10.1371/journal.pgen.1011615. eCollection 2025 Mar.
4
Chromatin Organization during Early Development.
DNA (Basel). 2024 Mar;4(1):64-83. doi: 10.3390/dna4010004. Epub 2024 Feb 22.
6
XOL-1 regulates developmental timing by modulating the H3K9 landscape in C. elegans early embryos.
PLoS Genet. 2024 Aug 15;20(8):e1011238. doi: 10.1371/journal.pgen.1011238. eCollection 2024 Aug.
7
Condensin I folds the Caenorhabditis elegans genome.
Nat Genet. 2024 Aug;56(8):1737-1749. doi: 10.1038/s41588-024-01832-5. Epub 2024 Jul 22.
9
SMC-mediated dosage compensation in evolved in the presence of an ancestral nematode mechanism.
bioRxiv. 2024 May 24:2024.05.21.595224. doi: 10.1101/2024.05.21.595224.
10
Analysis of developmental gene expression using smFISH and staging of embryos.
bioRxiv. 2024 May 16:2024.05.15.594414. doi: 10.1101/2024.05.15.594414.

本文引用的文献

1
Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes.
Mol Cell. 2015 Sep 3;59(5):755-67. doi: 10.1016/j.molcel.2015.07.007. Epub 2015 Aug 6.
3
Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation.
Mol Cell. 2015 Jul 16;59(2):188-202. doi: 10.1016/j.molcel.2015.06.002. Epub 2015 Jul 9.
4
Condensin-driven remodelling of X chromosome topology during dosage compensation.
Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.
6
Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing.
Mol Cell. 2015 Apr 16;58(2):216-31. doi: 10.1016/j.molcel.2015.02.023. Epub 2015 Mar 26.
7
Interrogating the function of metazoan histones using engineered gene clusters.
Dev Cell. 2015 Feb 9;32(3):373-86. doi: 10.1016/j.devcel.2014.12.025.
8
Mechanisms of x chromosome dosage compensation.
J Genomics. 2015 Jan 1;3:1-19. doi: 10.7150/jgen.10404. eCollection 2015.
9
Condensin-mediated chromosome organization and gene regulation.
Front Genet. 2015 Jan 13;5:473. doi: 10.3389/fgene.2014.00473. eCollection 2014.
10
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验