Anttila Matthew, Strangman Wendy, York Robert, Tomas Carmelo, Wright Jeffrey L C
UNCW Center for Marine Science , 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States.
J Nat Prod. 2016 Mar 25;79(3):484-9. doi: 10.1021/acs.jnatprod.5b00869. Epub 2015 Dec 7.
Understanding the biosynthesis of dinoflagellate polyketides presents many unique challenges. Because of the remaining hurdles to dinoflagellate genome sequencing, precursor labeling studies remain the only viable way to investigate dinoflagellate biosynthesis. However, prior studies have shown that polyketide chain assembly does not follow any of the established processes. Additionally, acetate, the common precursor for polyketides, is frequently scrambled, thus compromising interpretation. These factors are further compounded by low production yields of the compounds of interest. A recent report on the biosynthesis of spirolides, a group belonging to the growing class of toxic spiroimines, provided some insight into the polyketide assembly process based on acetate labeling studies, but many details were left uncertain. By feeding (13)C methyl-labeled methionine to cultures of Alexandrium ostenfeldii, the producing organism of 13-desmethylspirolide C, and application of the odd-even methylation rule, the complete biosynthetic pathway has been established.
了解甲藻聚酮化合物的生物合成面临许多独特的挑战。由于甲藻基因组测序仍存在障碍,前体标记研究仍然是研究甲藻生物合成的唯一可行方法。然而,先前的研究表明,聚酮链的组装并不遵循任何已确立的过程。此外,聚酮化合物的常见前体乙酸盐经常发生重排,从而影响解释结果。这些因素因目标化合物的低产率而进一步加剧。最近一份关于螺旋内酯(属于不断增加的有毒螺亚胺类的一组化合物)生物合成的报告,基于乙酸盐标记研究对聚酮组装过程提供了一些见解,但许多细节仍不确定。通过向13-去甲基螺旋内酯C的产生生物——奥氏亚历山大藻的培养物中添加(13)C甲基标记的蛋氨酸,并应用奇偶甲基化规则,已建立了完整的生物合成途径。