Verdonck Stijn, Tuerlinckx Francis
Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven.
Psychol Rev. 2016 Mar;123(2):208-18. doi: 10.1037/rev0000019. Epub 2015 Dec 7.
Choice reaction time (RT) experiments are an invaluable tool in psychology and neuroscience. A common assumption is that the total choice response time is the sum of a decision and a nondecision part (time spent on perceptual and motor processes). While the decision part is typically modeled very carefully (commonly with diffusion models), a simple and ad hoc distribution (mostly uniform) is assumed for the nondecision component. Nevertheless, it has been shown that the misspecification of the nondecision time can severely distort the decision model parameter estimates. In this article, we propose an alternative approach to the estimation of choice RT models that elegantly bypasses the specification of the nondecision time distribution by means of an unconventional convolution of data and decision model distributions (hence called the DM approach). Once the decision model parameters have been estimated, it is possible to compute a nonparametric estimate of the nondecision time distribution. The technique is tested on simulated data, and is shown to systematically remove traditional estimation bias related to misspecified nondecision time, even for a relatively small number of observations. The shape of the actual underlying nondecision time distribution can also be recovered. Next, the DM approach is applied to a selection of existing diffusion model application articles. For all of these studies, substantial quantitative differences with the original analyses are found. For one study, these differences radically alter its final conclusions, underlining the importance of our approach. Additionally, we find that strongly right skewed nondecision time distributions are not at all uncommon.
选择反应时(RT)实验是心理学和神经科学中一项非常重要的工具。一个常见的假设是,总的选择反应时间是决策部分和非决策部分(用于感知和运动过程的时间)之和。虽然决策部分通常会被非常仔细地建模(通常使用扩散模型),但非决策部分则假定为一个简单的临时分布(大多为均匀分布)。然而,已经证明非决策时间的错误设定会严重扭曲决策模型参数估计。在本文中,我们提出了一种估计选择RT模型的替代方法,该方法通过对数据和决策模型分布进行非常规卷积,巧妙地绕过了非决策时间分布的设定(因此称为DM方法)。一旦估计出决策模型参数,就可以计算非决策时间分布的非参数估计。该技术在模拟数据上进行了测试,结果表明即使对于相对较少的观测值,它也能系统地消除与错误设定的非决策时间相关的传统估计偏差。实际潜在的非决策时间分布的形状也可以恢复。接下来,DM方法被应用于一系列现有的扩散模型应用文章。对于所有这些研究,都发现与原始分析存在实质性的定量差异。对于一项研究,这些差异从根本上改变了其最终结论,凸显了我们方法的重要性。此外,我们发现强烈右偏的非决策时间分布并非罕见。