Suppr超能文献

整合工程学与生物学以治疗骨骼肌损伤和疾病并建立相关模型

Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease.

作者信息

Bursac Nenad, Juhas Mark, Rando Thomas A

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; email:

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305.

出版信息

Annu Rev Biomed Eng. 2015;17:217-42. doi: 10.1146/annurev-bioeng-071114-040640.

Abstract

Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice.

摘要

尽管骨骼肌是人体中再生能力最强的器官之一,但各种基因缺陷、外在信号改变或严重的组织损伤都会损害肌肉功能和自我修复能力。肌肉疾病的多样性和复杂性引起了细胞生物学家以及最近生物工程师的浓厚兴趣,促使人们集中精力更好地理解肌肉病理学并开发更有效的治疗方法。本综述描述了肌肉发育、修复和疾病的生物学基础,并讨论了最近在设计和控制肌肉模拟环境方面的生物工程努力,目的是研究肌肉生物学和功能,并协助开发针对肌肉疾病的新药物、细胞和基因疗法。工程辅助的生物学发现与受生物学启发的工程解决方案之间的协同作用将是把实验室结果转化为临床实践的前进道路。

相似文献

1
Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease.
Annu Rev Biomed Eng. 2015;17:217-42. doi: 10.1146/annurev-bioeng-071114-040640.
2
The need to more precisely define aspects of skeletal muscle regeneration.
Int J Biochem Cell Biol. 2014 Nov;56:56-65. doi: 10.1016/j.biocel.2014.09.010. Epub 2014 Sep 19.
3
Engineered matrices for skeletal muscle satellite cell engraftment and function.
Matrix Biol. 2017 Jul;60-61:96-109. doi: 10.1016/j.matbio.2016.06.001. Epub 2016 Jun 4.
5
Cell therapy to improve regeneration of skeletal muscle injuries.
J Cachexia Sarcopenia Muscle. 2019 Jun;10(3):501-516. doi: 10.1002/jcsm.12416. Epub 2019 Mar 6.
6
An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.
Biomaterials. 2015 Oct;67:393-407. doi: 10.1016/j.biomaterials.2015.07.040. Epub 2015 Jul 23.
7
Muscle stem cells in development, regeneration, and disease.
Genes Dev. 2006 Jul 1;20(13):1692-708. doi: 10.1101/gad.1419406.
8
Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease.
Nat Rev Mol Cell Biol. 2016 May;17(5):267-79. doi: 10.1038/nrm.2016.7. Epub 2016 Mar 9.
9
Myogenic Satellite Cells: Biological Milieu and Possible Clinical Applications.
Pak J Biol Sci. 2017;20(1):1-11. doi: 10.3923/pjbs.2017.1.11.
10
Regenerative and Rehabilitative Medicine: A Necessary Synergy for Functional Recovery from Volumetric Muscle Loss Injury.
Cells Tissues Organs. 2016;202(3-4):237-249. doi: 10.1159/000444673. Epub 2016 Nov 9.

引用本文的文献

1
The role of 3D printing in skeletal muscle-on-a-chip models: Current applications and future potential.
Mater Today Bio. 2025 Aug 20;34:102222. doi: 10.1016/j.mtbio.2025.102222. eCollection 2025 Oct.
2
Advancements in two-dimensional nanomaterials for regenerative medicine in skeletal muscle repair.
Mater Today Bio. 2025 Jun 2;33:101924. doi: 10.1016/j.mtbio.2025.101924. eCollection 2025 Aug.
3
Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1598-1611. doi: 10.1021/acsbiomaterials.4c01601. Epub 2025 Feb 5.
4
Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis.
J Funct Biomater. 2025 Jan 10;16(1):21. doi: 10.3390/jfb16010021.
5
Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries.
Skelet Muscle. 2024 Oct 29;14(1):26. doi: 10.1186/s13395-024-00358-y.
6
Freeze-dried porous collagen scaffolds for the repair of volumetric muscle loss injuries.
bioRxiv. 2024 Sep 3:2024.08.30.610194. doi: 10.1101/2024.08.30.610194.
9
Nanomaterial for Skeletal Muscle Regeneration.
Tissue Eng Regen Med. 2022 Apr;19(2):253-261. doi: 10.1007/s13770-022-00446-4. Epub 2022 Mar 25.
10
Recent Trends in Biofabrication Technologies for Studying Skeletal Muscle Tissue-Related Diseases.
Front Bioeng Biotechnol. 2021 Oct 27;9:782333. doi: 10.3389/fbioe.2021.782333. eCollection 2021.

本文引用的文献

2
Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells.
Biomaterials. 2014 Nov;35(35):9438-46. doi: 10.1016/j.biomaterials.2014.07.035. Epub 2014 Aug 22.
3
Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA.
Science. 2014 Sep 5;345(6201):1184-1188. doi: 10.1126/science.1254445. Epub 2014 Aug 14.
4
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.
6
Stem cell transplantation for muscular dystrophy: the challenge of immune response.
Biomed Res Int. 2014;2014:964010. doi: 10.1155/2014/964010. Epub 2014 Jun 26.
7
Coaxing stem cells for skeletal muscle repair.
Adv Drug Deliv Rev. 2015 Apr;84:198-207. doi: 10.1016/j.addr.2014.07.007. Epub 2014 Jul 15.
8
The promotion of a constructive macrophage phenotype by solubilized extracellular matrix.
Biomaterials. 2014 Oct;35(30):8605-12. doi: 10.1016/j.biomaterials.2014.06.060. Epub 2014 Jul 16.
9
TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease.
Trends Endocrinol Metab. 2014 Sep;25(9):464-71. doi: 10.1016/j.tem.2014.06.002. Epub 2014 Jul 16.
10
Congenital myopathies and muscular dystrophies.
Neurol Clin. 2014 Aug;32(3):689-703, viii. doi: 10.1016/j.ncl.2014.04.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验