Suppr超能文献

囊性纤维化肺部的铁摄取及新型治疗策略的潜力

Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies.

作者信息

Tyrrell Jean, Callaghan Máire

机构信息

Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland.

出版信息

Microbiology (Reading). 2016 Feb;162(2):191-205. doi: 10.1099/mic.0.000220. Epub 2015 Dec 4.

Abstract

Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.

摘要

铁的获取对微生物的生存至关重要,并且与许多寄生于囊性纤维化(CF)肺部的病原体的毒力有关。细菌和真菌病原体获取铁的方式具有多面性,包括一系列保守的和物种特异性的机制,如分泌铁结合铁载体、利用其他物种的铁载体、从宿主铁结合蛋白和血红蛋白中释放铁以及摄取亚铁离子。病原体根据铁的可用性、铁池的生物可利用性、感染阶段和竞争病原体的存在来适应和部署特定的系统。了解病原体获取铁的动态过程有可能揭示治疗急性和慢性CF感染的新治疗干预途径。在这里,我们研究了主要CF病原体用于获取铁的一系列策略,并讨论了将靶向铁获取系统作为抗菌策略的不同方法。

相似文献

1
Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies.
Microbiology (Reading). 2016 Feb;162(2):191-205. doi: 10.1099/mic.0.000220. Epub 2015 Dec 4.
2
Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis.
Biometals. 2009 Feb;22(1):53-60. doi: 10.1007/s10534-008-9197-9. Epub 2009 Jan 7.
3
Same Game, Different Players: Emerging Pathogens of the CF Lung.
mBio. 2021 Jan 12;12(1):e01217-20. doi: 10.1128/mBio.01217-20.
5
Seasonality of acquisition of respiratory bacterial pathogens in young children with cystic fibrosis.
BMC Infect Dis. 2017 Jun 9;17(1):411. doi: 10.1186/s12879-017-2511-9.
6
Role of siderophores in cystic fibrosis pathogenesis: foes or friends?
Int J Med Microbiol. 2009 Feb;299(2):87-98. doi: 10.1016/j.ijmm.2008.06.008. Epub 2008 Aug 27.
7
Harnessing Neutrophil Survival Mechanisms during Chronic Infection by : Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.
Front Cell Infect Microbiol. 2017 Jun 30;7:243. doi: 10.3389/fcimb.2017.00243. eCollection 2017.
8
Failure of local defense mechanisms in cystic fibrosis.
Acta Otorhinolaryngol Belg. 2000;54(3):367-72.
9
The cystic fibrosis lung microbiome.
Ann Am Thorac Soc. 2014 Jan;11 Suppl 1:S61-5. doi: 10.1513/AnnalsATS.201306-159MG.

引用本文的文献

1
Antibacterial Siderophores of Pandoraea Pathogens and Their Impact on the Diseased Lung Microbiota.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202505714. doi: 10.1002/anie.202505714. Epub 2025 Apr 14.
2
Calprotectin elicits aberrant iron starvation responses in under anaerobic conditions.
J Bacteriol. 2025 Apr 17;207(4):e0002925. doi: 10.1128/jb.00029-25. Epub 2025 Mar 26.
3
Exploring the Biocontrol Potential of against Wheat Crown Rot.
J Fungi (Basel). 2024 Sep 7;10(9):641. doi: 10.3390/jof10090641.
4
Mrs4 loss of function in fungi during adaptation to the cystic fibrosis lung.
mBio. 2023 Aug 31;14(4):e0117123. doi: 10.1128/mbio.01171-23. Epub 2023 Jul 11.
5
In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment.
G3 (Bethesda). 2023 Aug 9;13(8). doi: 10.1093/g3journal/jkad126.
6
Mrs4 loss of function in fungi during adaptation to the cystic fibrosis lung.
bioRxiv. 2023 Apr 6:2023.04.05.535776. doi: 10.1101/2023.04.05.535776.
7
Interplay between biofilm microenvironment and pathogenicity of in cystic fibrosis lung chronic infection.
Biofilm. 2022 Oct 22;4:100089. doi: 10.1016/j.bioflm.2022.100089. eCollection 2022 Dec.
9
Impact of Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease.
Int J Mol Sci. 2022 Oct 17;23(20):12421. doi: 10.3390/ijms232012421.
10
Niche, not phylogeny, governs the response to oxygen availability among diverse strains.
Front Microbiol. 2022 Aug 17;13:953964. doi: 10.3389/fmicb.2022.953964. eCollection 2022.

本文引用的文献

1
2
Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection.
Pediatr Pulmonol. 2015 Oct;50 Suppl 40:S31-8. doi: 10.1002/ppul.23243.
3
Aspergillus fumigatus chronic colonization and lung function decline in cystic fibrosis may have a two-way relationship.
Eur J Clin Microbiol Infect Dis. 2015 Nov;34(11):2235-41. doi: 10.1007/s10096-015-2474-y. Epub 2015 Aug 30.
5
Long-term social dynamics drive loss of function in pathogenic bacteria.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10756-61. doi: 10.1073/pnas.1508324112. Epub 2015 Aug 3.
6
Changing Epidemiology of the Respiratory Bacteriology of Patients With Cystic Fibrosis.
Chest. 2016 Feb;149(2):390-400. doi: 10.1378/chest.15-0676. Epub 2016 Jan 12.
7
Iron homeostasis in host defence and inflammation.
Nat Rev Immunol. 2015 Aug;15(8):500-10. doi: 10.1038/nri3863. Epub 2015 Jul 10.
8
Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate.
Med Microbiol Immunol. 2016 Feb;205(1):47-55. doi: 10.1007/s00430-015-0425-y. Epub 2015 Jul 9.
9
Lung microbiota across age and disease stage in cystic fibrosis.
Sci Rep. 2015 May 14;5:10241. doi: 10.1038/srep10241.
10
Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy.
Biochim Biophys Acta. 2015 Aug;1854(8):1054-70. doi: 10.1016/j.bbapap.2015.05.001. Epub 2015 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验