Suppr超能文献

图上莫兰过程中的定殖时间。

Colonization times in Moran process on graphs.

作者信息

Kopfová Lenka, Tkadlec Josef

机构信息

Computer Science Institute, Charles University, Prague, Czech Republic.

IST Austria, Klosterneuburg, Austria.

出版信息

PLoS Comput Biol. 2025 May 5;21(5):e1012868. doi: 10.1371/journal.pcbi.1012868. eCollection 2025 May.

Abstract

Moran Birth-death process is a standard stochastic process that is used to model natural selection in spatially structured populations. A newly occurring mutation that invades a population of residents can either fixate on the whole population or it can go extinct due to random drift. The duration of the process depends not only on the total population size n, but also on the spatial structure of the population. In this work, we consider the Moran process with a single type of individuals who invade and colonize an otherwise empty environment. Mathematically, this corresponds to the setting where the residents have zero reproduction rate, thus they never reproduce. The spatial structure is represented by a graph. We present two main contributions. First, in contrast to the Moran process in which residents do reproduce, we show that the colonization time is always at most a polynomial function of the population size n. Namely, we show that colonization always takes at most [Formula: see text] expected steps, and for each n, we identify the slowest graph where it takes exactly that many steps. Moreover, we establish a stronger bound of roughly [Formula: see text] steps for undirected graphs and an even stronger bound of roughly [Formula: see text] steps for so-called regular graphs. Second, we discuss various complications that one faces when attempting to measure fixation times and colonization times in spatially structured populations, and we propose to measure the real duration of the process, rather than counting the steps of the classic Moran process.

摘要

莫兰生死过程是一种标准的随机过程,用于对空间结构化种群中的自然选择进行建模。一个新出现的入侵居民种群的突变要么在整个种群中固定下来,要么由于随机漂变而灭绝。该过程的持续时间不仅取决于种群总数(n),还取决于种群的空间结构。在这项工作中,我们考虑具有单一类型个体的莫兰过程,这些个体入侵并殖民一个原本为空的环境。从数学上讲,这对应于居民繁殖率为零的情况,因此他们从不繁殖。空间结构由一个图表示。我们给出了两个主要贡献。首先,与居民确实会繁殖的莫兰过程不同,我们表明殖民时间总是至多为种群大小(n)的多项式函数。也就是说,我们表明殖民总是至多需要([公式:见正文])期望步数,并且对于每个(n),我们确定达到恰好那么多步数的最慢的图。此外,对于无向图,我们建立了一个更强的界,大约为([公式:见正文])步,对于所谓的正则图,我们建立了一个更强的界,大约为([公式:见正文])步。其次,我们讨论了在尝试测量空间结构化种群中的固定时间和殖民时间时所面临的各种复杂情况,并且我们建议测量该过程的实际持续时间,而不是计算经典莫兰过程的步数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4678/12052132/ca17a3a8d7a7/pcbi.1012868.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验