Nałęcz-Jawecki Paweł, Szymańska Paulina, Kochańczyk Marek, Miękisz Jacek, Lipniacki Tomasz
College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland.
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
J Chem Phys. 2015 Dec 7;143(21):215102. doi: 10.1063/1.4936131.
Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.
细胞中的生物信号通过反应循环进行传递,例如磷酸化 - 去磷酸化循环,在此循环中底物由拮抗酶进行修饰。这类反应中相当一部分发生在二维结构的拥挤环境中,如质膜或细胞内膜,并且预计是扩散控制的。在这项工作中,我们从微观双分子反应速率常数出发,利用酶 - 底物相遇的平均首次通过时间估计值,推导出了一般反应循环的扩散依赖有效宏观反应速率系数(EMRRC)。发现每个EMRRC是微观速率常数(磷酸化c或去磷酸化d)的调和平均值的一半,以及有效(依赖拥挤程度的)迁移率除以酶浓度总和的缓慢递减对数函数。这意味着当c和d不同时,两个EMRRC随迁移率的缩放方式不同,使得磷酸化底物分子的稳态分数依赖于扩散。使用单分子分辨率的二维三角晶格上的动力学蒙特卡罗模拟验证了分析预测。结果表明,所提出的公式可以估计不同微观反应速率和反应物浓度集的稳态浓度和有效反应速率,包括一个非平凡的例子,即随着扩散率增加,磷酸化底物分子的分数从10%变为90%。