Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.
Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.
Acta Physiol (Oxf). 2016 May;217(1):80-93. doi: 10.1111/apha.12637. Epub 2015 Dec 29.
Recent evidence suggests that adenosine triphosfate (ATP)-mediated purinergic signalling at the level of the rostral ventrolateral medulla contributes to both central and peripheral chemoreceptor control of breathing and blood pressure: neurones in the retrotrapezoid nucleus (RTN) function as central chemoreceptors in part by responding to CO2 -evoked ATP release by activation of yet unknown P2 receptors, and nearby catecholaminergic C1 neurones regulate blood pressure responses to peripheral chemoreceptor activation by a P2Y1 receptor-dependent mechanism. However, potential contributions of purinergic signalling in the RTN to cardiorespiratory function in conscious animals have not been tested.
Cardiorespiratory activity of unrestrained awake rats was measured in response to RTN injections of ATP, and during exposure to hypercapnia (7% CO2 ) or hypoxia (8% O2 ) under control conditions and after bilateral RTN injections of P2 receptor blockers (PPADS or MRS2179).
Unilateral injection of ATP into the RTN increased cardiorespiratory output by a P2-receptor-dependent mechanism. We also show that bilateral RTN injections of a non-specific P2 receptor blocker (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) reduced the ventilatory response to hypercapnia (7% CO2 ) and hypoxia (8% O2 ) in unanesthetized rats. Conversely, bilateral injections of a specific P2Y1 receptor blocker (MRS2179) into the RTN had no measurable effect on ventilatory responses elicited by hypercapnia or hypoxia.
These data exclude P2Y1 receptor involvement in the chemosensory control of breathing at the level of the RTN and show that ATP-mediated purinergic signalling contributes to central and peripheral chemoreflex control of breathing and blood pressure in awake rats.
最近的证据表明,三磷酸腺苷(ATP)介导的嘌呤能信号在延髓头端腹外侧区水平对中枢和外周化学感受器控制呼吸和血压都有贡献:位于梯形核(RTN)内的神经元部分通过对未知 P2 受体的激活来响应 CO2 诱发的 ATP 释放,从而发挥中枢化学感受器的作用,而附近的儿茶酚胺能 C1 神经元通过一种 P2Y1 受体依赖的机制调节对外周化学感受器激活的血压反应。然而,在清醒动物中,RTN 中的嘌呤能信号对心肺功能的潜在贡献尚未得到测试。
在控制条件下和双侧 RTN 注射 P2 受体阻滞剂(PPADS 或 MRS2179)后,测量自由活动的清醒大鼠对 RTN 内 ATP 注射的心肺活动反应,以及在暴露于高碳酸血症(7%CO2)或低氧(8%O2)时的反应。
单侧 RTN 内注射 ATP 通过 P2 受体依赖的机制增加心肺输出。我们还表明,双侧 RTN 内注射非特异性 P2 受体阻滞剂(吡哆醛-6-偶氮-2',4'-二磺酸钠(PPADS))可降低未麻醉大鼠对高碳酸血症(7%CO2)和低氧(8%O2)的通气反应。相反,RTN 内双侧注射特异性 P2Y1 受体阻滞剂(MRS2179)对高碳酸血症或低氧引起的通气反应没有可测量的影响。
这些数据排除了 P2Y1 受体在 RTN 水平的化学感觉控制呼吸中的参与,并表明 ATP 介导的嘌呤能信号在清醒大鼠的中枢和外周化学感受器控制呼吸和血压中起作用。