Couger M B, Youssef Noha H, Struchtemeyer Christopher G, Liggenstoffer Audra S, Elshahed Mostafa S
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK USA.
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK USA ; Department of Biology and Health Sciences, McNeese State University, Lake Charles, LA USA.
Biotechnol Biofuels. 2015 Dec 8;8:208. doi: 10.1186/s13068-015-0390-0. eCollection 2015.
Anaerobic fungi reside in the rumen and alimentary tract of herbivores where they play an important role in the digestion of ingested plant biomass. The anaerobic fungal isolate Orpinomyces sp. strain C1A is an efficient biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple types of lignocellulosic biomass. To understand the mechanistic and regulatory basis of biomass deconstruction in anaerobic fungi, we analyzed the transcriptomic profiles of C1A when grown on four different types of lignocellulosic biomass (alfalfa, energy cane, corn stover, and sorghum) versus a soluble sugar monomer (glucose).
A total of 468.2 million reads (70.2 Gb) were generated and assembled into 27,506 distinct transcripts. CAZyme transcripts identified included 385, 246, and 44 transcripts belonging to 44, 13, and 8 different glycoside hydrolases (GH), carbohydrate esterases, and polysaccharide lyases families, respectively. Examination of CAZyme transcriptional patterns indicates that strain C1A constitutively transcribes a high baseline level of CAZyme transcripts on glucose. Although growth on lignocellulosic biomass substrates was associated with a significant increase in transcriptional levels in few GH families, including the highly transcribed GH1 β-glucosidase, GH6 cellobiohydrolase, and GH9 endoglucanase, the transcriptional levels of the majority of CAZyme families and transcripts were not significantly altered in glucose-grown versus lignocellulosic biomass-grown cultures. Further, strain C1A co-transcribes multiple functionally redundant enzymes for cellulose and hemicellulose saccharification that are mechanistically and structurally distinct. Analysis of fungal dockerin domain-containing transcripts strongly suggests that anaerobic fungal cellulosomes represent distinct catalytic units capable of independently attacking and converting intact plant fibers to sugar monomers.
Collectively, these results demonstrate that strain C1A achieves fast, effective biomass degradation by the simultaneous employment of a wide array of constitutively-transcribed cellulosome-bound and free enzymes with considerable functional overlap. We argue that the utilization of this indiscriminate strategy could be justified by the evolutionary history of anaerobic fungi, as well as their functional role within their natural habitat in the herbivorous gut.
厌氧真菌存在于食草动物的瘤胃和消化道中,在摄入植物生物质的消化过程中发挥重要作用。厌氧真菌分离株奥尔平酵母属(Orpinomyces)菌株C1A是一种高效的生物质降解菌,能够同时糖化和发酵多种木质纤维素生物质中的纤维素和半纤维素部分。为了了解厌氧真菌生物质解构的机制和调控基础,我们分析了C1A在四种不同类型的木质纤维素生物质(苜蓿、能源甘蔗、玉米秸秆和高粱)与一种可溶性糖单体(葡萄糖)上生长时的转录组图谱。
共产生了4.682亿条读数(70.2Gb),并组装成27506个不同的转录本。鉴定出的碳水化合物活性酶(CAZyme)转录本包括分别属于44个、13个和8个不同糖苷水解酶(GH)、碳水化合物酯酶和多糖裂解酶家族的385、246和44个转录本。对CAZyme转录模式的研究表明,菌株C1A在葡萄糖上组成型转录高水平的CAZyme转录本基线。尽管在木质纤维素生物质底物上生长与少数GH家族(包括高转录的GH1β-葡萄糖苷酶、GH6纤维二糖水解酶和GH9内切葡聚糖酶)转录水平的显著增加有关,但在葡萄糖培养和木质纤维素生物质培养的菌株中,大多数CAZyme家族和转录本的转录水平没有显著变化。此外,菌株C1A共同转录多种功能冗余的酶用于纤维素和半纤维素糖化,这些酶在机制和结构上是不同的。对含有真菌dockerin结构域的转录本的分析强烈表明,厌氧真菌纤维小体代表能够独立攻击完整植物纤维并将其转化为糖单体的独特催化单元。
总的来说,这些结果表明,菌株C1A通过同时利用大量组成型转录的、与纤维小体结合的和游离的酶,且这些酶具有相当大的功能重叠,实现了快速、有效的生物质降解。我们认为,考虑到厌氧真菌的进化历史及其在食草动物肠道自然栖息地中的功能作用,这种不加区分的策略的利用是合理的。