Department of Genetics, University of Georgia, Athens, GA 30602; andThe BioEnergy Science Center and.
The BioEnergy Science Center andBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6. doi: 10.1073/pnas.1402210111. Epub 2014 Jun 2.
Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.
乙醇是美国应用最广泛的可再生交通生物燃料,2012 年的产量达到 133 亿加仑[John UM(2013)美国乙醇产业对经济的贡献]。尽管人们付出了相当大的努力来从木质纤维素生物质中生产燃料,但在微生物生物转化之前进行化学预处理和添加糖化酶仍然是工业应用的经济障碍[Lynd LR,等(2008)Nat Biotechnol 26(2):169-172]。我们从嗜热、厌氧、纤维素分解菌 Caldicellulosiruptor bescii 开始,它可以有效地利用未经预处理的生物质,并对其进行工程改造以生产乙醇。在这里,我们报告了直接将柳枝稷(一种非食用、可再生的饲料原料)转化为乙醇,而无需对生物质进行常规预处理。通过缺失乳酸脱氢酶并异源表达梭菌热纤维梭菌的双功能乙醛/乙醇脱氢酶来实现这一过程。野生型 C. bescii 缺乏生产乙醇的能力,而工程菌株中 70%的发酵产物是乙醇[直接从 2%(wt/vol)柳枝稷中产生 12.8mM 乙醇,这是一种实际底物],与野生型相比,乙酸的产量减少了 38%。将生物质直接转化为乙醇代表了整合生物加工的一个新范例,为生产碳中和、具有成本效益、可持续的燃料提供了潜力。