Suppr超能文献

相似文献

1
Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6. doi: 10.1073/pnas.1402210111. Epub 2014 Jun 2.
3
Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose.
Biotechnol Bioeng. 2020 Dec;117(12):3799-3808. doi: 10.1002/bit.27529. Epub 2020 Aug 24.
6
Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth.
Bioresour Technol. 2023 Jan;367:128275. doi: 10.1016/j.biortech.2022.128275. Epub 2022 Nov 5.
8
Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, .
Metab Eng Commun. 2018 May 28;7:e00073. doi: 10.1016/j.mec.2018.e00073. eCollection 2018 Dec.

引用本文的文献

1
Exploiting Archaeal/Thermostable Enzymes in Synthetic Chemistry: Back to the Future?
ChemCatChem. 2024 Nov 11;16(21). doi: 10.1002/cctc.202400835. Epub 2024 Jul 8.
2
Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium (f. ).
J Bacteriol. 2025 May 22;207(5):e0040124. doi: 10.1128/jb.00401-24. Epub 2025 Apr 30.
3
Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing.
Eng Microbiol. 2024 Sep 10;4(4):100174. doi: 10.1016/j.engmic.2024.100174. eCollection 2024 Dec.
4
Production of Succinic Acid by Metabolically Engineered from Lignocellulosic Hydrolysate Derived from Barley Straw.
J Microbiol Biotechnol. 2024 Dec 28;34(12):2618-2626. doi: 10.4014/jmb.2410.10053. Epub 2024 Nov 25.
5
Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.
J Ind Microbiol Biotechnol. 2024 Jan 9;51. doi: 10.1093/jimb/kuae020.
6
Extremophiles in a changing world.
Extremophiles. 2024 Apr 29;28(2):26. doi: 10.1007/s00792-024-01341-7.
7
Metabolic engineering of Caldicellulosiruptor bescii for hydrogen production.
Appl Microbiol Biotechnol. 2024 Dec;108(1):65. doi: 10.1007/s00253-023-12974-7. Epub 2024 Jan 9.
8
Whither the genus and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype.
Front Microbiol. 2023 Aug 3;14:1212538. doi: 10.3389/fmicb.2023.1212538. eCollection 2023.
9
A novel SfaNI-like restriction-modification system in Caldicellulosiruptor extents the genetic engineering toolbox for this genus.
PLoS One. 2022 Dec 29;17(12):e0279562. doi: 10.1371/journal.pone.0279562. eCollection 2022.
10
Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
Appl Environ Microbiol. 2022 Oct 26;88(20):e0127422. doi: 10.1128/aem.01274-22. Epub 2022 Sep 28.

本文引用的文献

2
Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii.
J Ind Microbiol Biotechnol. 2013 Dec;40(12):1443-8. doi: 10.1007/s10295-013-1345-8. Epub 2013 Oct 1.
6
Next generation biofuel engineering in prokaryotes.
Curr Opin Chem Biol. 2013 Jun;17(3):462-71. doi: 10.1016/j.cbpa.2013.03.037. Epub 2013 Apr 23.
8
Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.
J Ind Microbiol Biotechnol. 2013 Jan;40(1):41-9. doi: 10.1007/s10295-012-1202-1. Epub 2012 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验