Suppr超能文献

一种表观遗传工具包使得真核生物中存在多样的基因组结构。

An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

作者信息

Maurer-Alcalá Xyrus X, Katz Laura A

机构信息

Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.

Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

Curr Opin Genet Dev. 2015 Dec;35:93-9. doi: 10.1016/j.gde.2015.10.005. Epub 2015 Nov 30.

Abstract

Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

摘要

在大小和结构方面(例如基因组内序列的分布、体细胞核形成过程中DNA的消除),真核生物的基因组结构差异很大。真核生物基因组结构的多样性和动态过程只有借助完善的表观遗传工具包才有可能实现,而该工具包可能存在于最后的真核生物共同祖先(LECA)中。这个工具包可能是作为应对基因组冲突的一种手段而出现的,这种冲突源于祖先真核生物基因组中转座元件的扩张。这个工具包已被用于支持整个真核生物生命树谱系中基因组的动态特性。在这里,我们强调了不同真核生物中基因组结构的变化是如何由表观遗传过程调控的,如DNA消除、基因组重排以及对基因组结构的适应性变化。通过表观遗传方式修饰和调控基因组的能力对当今观察到的真核生物多样性做出了巨大贡献。

相似文献

5
A Field Guide to Eukaryotic Transposable Elements.真核转座元件野外手册。
Annu Rev Genet. 2020 Nov 23;54:539-561. doi: 10.1146/annurev-genet-040620-022145. Epub 2020 Sep 21.
7
Evolutionary origins and impacts of genome architecture in ciliates.纤毛虫基因组结构的进化起源和影响。
Ann N Y Acad Sci. 2019 Jul;1447(1):110-118. doi: 10.1111/nyas.14108. Epub 2019 May 10.
9
Origin and diversification of eukaryotes.真核生物的起源与多样化。
Annu Rev Microbiol. 2012;66:411-27. doi: 10.1146/annurev-micro-090110-102808. Epub 2012 Jul 9.

引用本文的文献

4
Evolutionary origins and impacts of genome architecture in ciliates.纤毛虫基因组结构的进化起源和影响。
Ann N Y Acad Sci. 2019 Jul;1447(1):110-118. doi: 10.1111/nyas.14108. Epub 2019 May 10.
7
Insights into transgenerational epigenetics from studies of ciliates.从纤毛虫研究中洞察跨代表观遗传学。
Eur J Protistol. 2017 Oct;61(Pt B):366-375. doi: 10.1016/j.ejop.2017.05.004. Epub 2017 May 16.

本文引用的文献

5
Bursts of transposable elements as an evolutionary driving force.转座元件爆发作为一种进化驱动力。
J Evol Biol. 2014 Dec;27(12):2573-84. doi: 10.1111/jeb.12513. Epub 2014 Oct 7.
9
Programmed DNA elimination in multicellular organisms.多细胞生物中的程序性DNA消除
Curr Opin Genet Dev. 2014 Aug;27:26-34. doi: 10.1016/j.gde.2014.03.012. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验