Suppr超能文献

用于眼部给药的纳米结构材料:增强生物粘附性、跨上皮渗透性和持续给药的纳米设计

Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery.

作者信息

Kim Jean, Schlesinger Erica B, Desai Tejal A

机构信息

UC Berkeley-UCSF Graduate Program in Bioengineering, 1700 4th Street Room 204, UCSF Mission Bay Campus, San Francisco, CA 94158, USA.

Department of Bioengineering & Therapeutic Sciences, 1700 4th Street Room 204, UCSF Mission Bay Campus, San Francisco, CA 94158, USA.

出版信息

Ther Deliv. 2015;6(12):1365-76. doi: 10.4155/tde.15.75.

Abstract

Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered.

摘要

由于患者依从性差以及存在众多生理屏障,实现有效的眼部药物递送一直是一项挑战。用于眼前部的眼药水和用于眼后部的眼部注射是最常见的给药方式,这两种方式都需要相对频繁地给药,给患者带来负担。新型药物递送技术有望大幅提高眼部治疗药物的安全性、疗效和患者依从性。纳米制造技术的显著进步使纳米结构材料应用于眼部药物递送成为可能。本文重点介绍具有纳米孔隙率或纳米形貌的纳米结构材料在眼部给药中的应用。具体而言,我们讨论了用于增强生物粘附和渗透的纳米形貌以及用于控释药物递送的纳米多孔材料。例如,涵盖了用于提高经上皮渗透性的聚合物纳米结构、用于延长眼前滞留时间的纳米结构微粒以及用于调节药物释放曲线的纳米多孔膜的应用。

相似文献

2
Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone.
Nanomedicine (Lond). 2018 Jun;13(11):1239-1253. doi: 10.2217/nnm-2017-0318.
4
Nanostructured mucoadhesive microparticles for enhanced preocular retention.
Acta Biomater. 2014 Jan;10(1):77-86. doi: 10.1016/j.actbio.2013.08.026. Epub 2013 Aug 23.
5
Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.
J Control Release. 2017 Feb 28;248:96-116. doi: 10.1016/j.jconrel.2017.01.012. Epub 2017 Jan 11.
6
Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics.
Pharm Nanotechnol. 2024;12(2):126-142. doi: 10.2174/2211738511666230727102213.
7
Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery.
J Drug Target. 2011 Jul;19(6):409-17. doi: 10.3109/1061186X.2010.504268. Epub 2010 Aug 3.
9
Application of lipid nanoparticles to ocular drug delivery.
Expert Opin Drug Deliv. 2016 Dec;13(12):1743-1757. doi: 10.1080/17425247.2016.1201059. Epub 2016 Jun 24.
10
Nanomaterials for ocular drug delivery.
Macromol Biosci. 2012 May;12(5):608-20. doi: 10.1002/mabi.201100419. Epub 2012 Apr 17.

引用本文的文献

1
Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers.
Int J Mol Sci. 2024 Jun 28;25(13):7098. doi: 10.3390/ijms25137098.
2
Progress in Ocular Drug Delivery: Challenges and Constraints.
Handb Exp Pharmacol. 2024;284:267-288. doi: 10.1007/164_2023_693.
3
TiO-Based Nanotopographical Cues Attenuate the Restenotic Phenotype in Primary Human Vascular Endothelial and Smooth Muscle Cells.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):923-932. doi: 10.1021/acsbiomaterials.9b01475. Epub 2020 Jan 17.
4
Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery.
Comput Struct Biotechnol J. 2019 Sep 11;17:1290-1308. doi: 10.1016/j.csbj.2019.09.004. eCollection 2019.
5
Design and fabrication of drug-eluting polymeric thin films for applications in ophthalmology.
IET Nanobiotechnol. 2018 Dec;12(8):1074-1079. doi: 10.1049/iet-nbt.2018.5151.
9
Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases.
Pharmaceutics. 2018 Feb 27;10(1):28. doi: 10.3390/pharmaceutics10010028.
10
Ocular delivery of proteins and peptides: Challenges and novel formulation approaches.
Adv Drug Deliv Rev. 2018 Feb 15;126:67-95. doi: 10.1016/j.addr.2018.01.008. Epub 2018 Jan 13.

本文引用的文献

2
Ocular drug delivery nanowafer with enhanced therapeutic efficacy.
ACS Nano. 2015 Feb 24;9(2):1749-58. doi: 10.1021/nn506599f. Epub 2015 Jan 27.
3
4
Nanostructured mucoadhesive microparticles for enhanced preocular retention.
Acta Biomater. 2014 Jan;10(1):77-86. doi: 10.1016/j.actbio.2013.08.026. Epub 2013 Aug 23.
5
Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films.
J Ocul Pharmacol Ther. 2013 Mar;29(2):249-57. doi: 10.1089/jop.2012.0152. Epub 2013 Feb 7.
6
Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography.
Nano Lett. 2013 Jan 9;13(1):164-71. doi: 10.1021/nl3037799. Epub 2012 Dec 24.
7
Nanostructured thin film polymer devices for constant-rate protein delivery.
Nano Lett. 2012 Oct 10;12(10):5355-61. doi: 10.1021/nl302747y. Epub 2012 Sep 19.
8
Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices.
ACS Nano. 2012 Sep 25;6(9):7832-41. doi: 10.1021/nn3019865. Epub 2012 Aug 24.
9
Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents.
Ophthalmology. 2011 Oct;118(10):2028-34. doi: 10.1016/j.ophtha.2011.02.034. Epub 2011 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验