Suppr超能文献

阻断CCR2可减少巨噬细胞流入,并减轻小鼠肾血管性高血压中慢性肾损伤的发展。

Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension.

作者信息

Kashyap Sonu, Warner Gina M, Hartono Stella P, Boyilla Rajendra, Knudsen Bruce E, Zubair Adeel S, Lien Karen, Nath Karl A, Textor Stephen C, Lerman Lilach O, Grande Joseph P

机构信息

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota;

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Mayo Medical School, Mayo Clinic, Rochester, Minnesota; and.

出版信息

Am J Physiol Renal Physiol. 2016 Mar 1;310(5):F372-84. doi: 10.1152/ajprenal.00131.2015. Epub 2015 Dec 9.

Abstract

Renovascular hypertension (RVH) is a common cause of both cardiovascular and renal morbidity and mortality. In renal artery stenosis (RAS), atrophy in the stenotic kidney is associated with an influx of macrophages and other mononuclear cells. We tested the hypothesis that chemokine receptor 2 (CCR2) inhibition would reduce chronic renal injury by reducing macrophage influx in the stenotic kidney of mice with RAS. We employed a well-established murine model of RVH to define the relationship between macrophage infiltration and development of renal atrophy in the stenotic kidney. To determine the role of chemokine ligand 2 (CCL2)/CCR2 signaling in the development of renal atrophy, mice were treated with the CCR2 inhibitor RS-102895 at the time of RAS surgery and followed for 4 wk. Renal tubular epithelial cells expressed CCL2 by 3 days following surgery, a time at which no significant light microscopic alterations, including interstitial inflammation, were identified. Macrophage influx increased with time following surgery. At 4 wk, the development of severe renal atrophy was accompanied by an influx of inducible nitric oxide synthase (iNOS)+ and CD206+ macrophages that coexpressed F4/80, with a modest increase in macrophages coexpressing arginase 1 and F4/80. The CCR2 inhibitor RS-102895 attenuated renal atrophy and significantly reduced the number of dual-stained F4/80+ iNOS+ and F4/80+ CD206+ but not F4/80+ arginase 1+ macrophages. CCR2 inhibition reduces iNOS+ and CD206+ macrophage accumulation that coexpress F4/80 and renal atrophy in experimental renal artery stenosis. CCR2 blockade may provide a novel therapeutic approach to humans with RVH.

摘要

肾血管性高血压(RVH)是心血管疾病和肾脏疾病发病及死亡的常见原因。在肾动脉狭窄(RAS)中,狭窄肾脏的萎缩与巨噬细胞和其他单核细胞的流入有关。我们检验了以下假设:趋化因子受体2(CCR2)抑制可通过减少RAS小鼠狭窄肾脏中的巨噬细胞流入来减轻慢性肾损伤。我们采用了一种成熟的RVH小鼠模型来确定巨噬细胞浸润与狭窄肾脏中肾萎缩发展之间的关系。为了确定趋化因子配体2(CCL2)/CCR2信号在肾萎缩发展中的作用,在RAS手术时用CCR2抑制剂RS-102895处理小鼠,并随访4周。术后3天肾小管上皮细胞表达CCL2,此时未发现明显的光镜改变,包括间质炎症。术后巨噬细胞流入随时间增加。在4周时,严重肾萎缩的发展伴随着诱导型一氧化氮合酶(iNOS)+和CD206+巨噬细胞的流入,这些巨噬细胞共表达F4/80,同时共表达精氨酸酶1和F4/80的巨噬细胞略有增加。CCR2抑制剂RS-102895减轻了肾萎缩,并显著减少了双染的F4/80+iNOS+和F4/80+CD206+巨噬细胞的数量,但未减少F4/80+精氨酸酶1+巨噬细胞的数量。CCR2抑制可减少共表达F4/80的iNOS+和CD206+巨噬细胞的积聚以及实验性肾动脉狭窄中的肾萎缩。CCR2阻断可能为RVH患者提供一种新的治疗方法。

相似文献

1
Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension.
Am J Physiol Renal Physiol. 2016 Mar 1;310(5):F372-84. doi: 10.1152/ajprenal.00131.2015. Epub 2015 Dec 9.
2
Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.
Am J Physiol Renal Physiol. 2013 Apr 1;304(7):F938-47. doi: 10.1152/ajprenal.00706.2012. Epub 2013 Jan 30.
3
Ccl2 deficiency protects against chronic renal injury in murine renovascular hypertension.
Sci Rep. 2018 Jun 5;8(1):8598. doi: 10.1038/s41598-018-26870-y.
4
CC chemokine receptor 2 promotes recruitment of myeloid cells associated with insulin resistance in nonalcoholic fatty liver disease.
Am J Physiol Gastrointest Liver Physiol. 2018 Apr 1;314(4):G483-G493. doi: 10.1152/ajpgi.00213.2017. Epub 2018 Feb 8.
5
CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension.
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F982-F993. doi: 10.1152/ajprenal.00521.2019. Epub 2020 Mar 9.
7
Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice.
Hypertension. 2012 Nov;60(5):1207-12. doi: 10.1161/HYPERTENSIONAHA.112.201251. Epub 2012 Oct 1.
9
M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure.
Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H906-17. doi: 10.1152/ajpheart.00821.2014. Epub 2015 Jun 12.
10
Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue.
J Biol Chem. 2008 Dec 19;283(51):35715-23. doi: 10.1074/jbc.M804220200. Epub 2008 Oct 30.

引用本文的文献

1
Mechanisms and Prevention Strategies of Macrophage Involvement in the Progression From Hypertension to Heart Failure.
Int J Hypertens. 2025 Jun 20;2025:2618127. doi: 10.1155/ijhy/2618127. eCollection 2025.
2
Innate immune cells in acute and chronic kidney disease.
Nat Rev Nephrol. 2025 Apr 22. doi: 10.1038/s41581-025-00958-x.
3
Role of plasmacytoid dendritic cells in vascular dysfunction in mice with renovascular hypertension.
Heliyon. 2024 May 29;10(11):e31799. doi: 10.1016/j.heliyon.2024.e31799. eCollection 2024 Jun 15.
4
Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury.
Front Endocrinol (Lausanne). 2024 Jan 8;14:1256375. doi: 10.3389/fendo.2023.1256375. eCollection 2023.
5
Role of MCP-1 as an inflammatory biomarker in nephropathy.
Front Immunol. 2024 Jan 4;14:1303076. doi: 10.3389/fimmu.2023.1303076. eCollection 2023.
7
Interleukin-1β Disruption Protects Male Mice From Heart Failure With Preserved Ejection Fraction Pathogenesis.
J Am Heart Assoc. 2023 Jul 18;12(14):e029668. doi: 10.1161/JAHA.122.029668. Epub 2023 Jun 22.
8
Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology.
J Inflamm (Lond). 2022 Oct 4;19(1):14. doi: 10.1186/s12950-022-00311-0.
9
Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications.
Front Immunol. 2022 Aug 30;13:975367. doi: 10.3389/fimmu.2022.975367. eCollection 2022.
10
KLF11 deficiency enhances chemokine generation and fibrosis in murine unilateral ureteral obstruction.
PLoS One. 2022 Apr 12;17(4):e0266454. doi: 10.1371/journal.pone.0266454. eCollection 2022.

本文引用的文献

1
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms.
Mediators Inflamm. 2015;2015:816460. doi: 10.1155/2015/816460. Epub 2015 May 18.
2
Inflammatory processes in renal fibrosis.
Nat Rev Nephrol. 2014 Sep;10(9):493-503. doi: 10.1038/nrneph.2014.114. Epub 2014 Jul 1.
3
The M1 and M2 paradigm of macrophage activation: time for reassessment.
F1000Prime Rep. 2014 Mar 3;6:13. doi: 10.12703/P6-13. eCollection 2014.
4
Stenting and medical therapy for atherosclerotic renal-artery stenosis.
N Engl J Med. 2014 Jan 2;370(1):13-22. doi: 10.1056/NEJMoa1310753. Epub 2013 Nov 18.
5
Macrophages directly mediate diabetic renal injury.
Am J Physiol Renal Physiol. 2013 Dec 15;305(12):F1719-27. doi: 10.1152/ajprenal.00141.2013. Epub 2013 Oct 30.
6
Redox signaling is an early event in the pathogenesis of renovascular hypertension.
Int J Mol Sci. 2013 Sep 10;14(9):18640-56. doi: 10.3390/ijms140918640.
7
Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice.
Nephrol Dial Transplant. 2013 Jul;28(7):1700-10. doi: 10.1093/ndt/gfs555. Epub 2013 Jun 22.
9
Baseline inflammatory status and long-term changes in renal function after percutaneous renal artery stenting: a prospective study.
Int J Cardiol. 2013 Aug 10;167(3):1006-11. doi: 10.1016/j.ijcard.2012.03.078. Epub 2012 Apr 13.
10
Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2.
Am J Physiol Gastrointest Liver Physiol. 2012 Jun 1;302(11):G1310-21. doi: 10.1152/ajpgi.00365.2011. Epub 2012 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验