Suppr超能文献

基于基因组学建立杂交小麦育种的高产杂种优势模式。

Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding.

作者信息

Zhao Yusheng, Li Zuo, Liu Guozheng, Jiang Yong, Maurer Hans Peter, Würschum Tobias, Mock Hans-Peter, Matros Andrea, Ebmeyer Erhard, Schachschneider Ralf, Kazman Ebrahim, Schacht Johannes, Gowda Manje, Longin C Friedrich H, Reif Jochen C

机构信息

Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany;

State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany;

出版信息

Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15624-9. doi: 10.1073/pnas.1514547112. Epub 2015 Dec 9.

Abstract

Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.

摘要

杂交育种有望提高产量和稳定性。实施杂交育种最重要的单一要素是识别高产杂种优势模式。我们已经开发出一种三步策略,用于识别杂交育种的杂种优势模式,包括以下要素。首先,使用基因组预测编制完整的杂交表现矩阵。其次,基于开发的模拟退火算法搜索高产杂种优势模式。第三,通过估计杂种优势模式相对于定义的基础群体的有用性、选择极限和代表性,评估所识别杂种优势模式的长期成功性。使用包含1604个杂种及其135个亲本的表型和基因组小麦数据集成功实施并评估了这种三步方法。基于代谢组学的预测整合不如基因组预测强大。我们表明,基于所识别杂种优势模式的杂交小麦育种可以通过利用杂种优势提高谷物产量,并增强轮回选择增益。我们的策略代表了杂交育种向前迈出的关键一步,并且与目前正从纯系向高产且有韧性的杂交品种转变的自花授粉作物相关。

相似文献

1
Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15624-9. doi: 10.1073/pnas.1514547112. Epub 2015 Dec 9.
2
A unified framework for hybrid breeding and the establishment of heterotic groups in wheat.
Theor Appl Genet. 2016 Jun;129(6):1231-45. doi: 10.1007/s00122-016-2699-x. Epub 2016 Mar 8.
4
Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs.
Theor Appl Genet. 2013 Nov;126(11):2791-801. doi: 10.1007/s00122-013-2172-z. Epub 2013 Aug 4.
5
Can spelt wheat be used as heterotic group for hybrid wheat breeding?
Theor Appl Genet. 2018 Apr;131(4):973-984. doi: 10.1007/s00122-018-3052-3. Epub 2018 Jan 16.
6
A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat.
Nat Genet. 2017 Dec;49(12):1741-1746. doi: 10.1038/ng.3974. Epub 2017 Oct 16.
7
Heterosis in crop improvement.
Plant J. 2024 Jan;117(1):23-32. doi: 10.1111/tpj.16488. Epub 2023 Nov 16.
8
Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet.
Theor Appl Genet. 2020 Mar;133(3):873-888. doi: 10.1007/s00122-019-03512-z. Epub 2020 Jan 2.
9
Heterotic groups of tropical indica rice germplasm.
Theor Appl Genet. 2015 Mar;128(3):421-30. doi: 10.1007/s00122-014-2441-5. Epub 2014 Dec 16.
10
Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
Genetics. 2014 Aug;197(4):1343-55. doi: 10.1534/genetics.114.165860. Epub 2014 May 21.

引用本文的文献

1
Optimising parent selection in plant breeding: comparing metaheuristic algorithms for genotype building.
Theor Appl Genet. 2025 Sep 6;138(9):242. doi: 10.1007/s00122-025-05028-1.
2
Harnessing big data for enhanced genome-wide prediction in winter wheat breeding.
Theor Appl Genet. 2025 Aug 22;138(9):224. doi: 10.1007/s00122-025-05007-6.
3
Breaking down data silos across companies to train genome-wide predictions: A feasibility study in wheat.
Plant Biotechnol J. 2025 Jul;23(7):2704-2719. doi: 10.1111/pbi.70095. Epub 2025 Apr 20.
4
Impact of structural variations and genome partitioning on bread wheat hybrid performance.
Funct Integr Genomics. 2025 Jan 9;25(1):10. doi: 10.1007/s10142-024-01512-x.
5
Phenomic Selection for Hybrid Rapeseed Breeding.
Plant Phenomics. 2024 Jul 24;6:0215. doi: 10.34133/plantphenomics.0215. eCollection 2024.
7
Dynamic Phytomeric Growth Contributes to Local Adaptation in Barley.
Mol Biol Evol. 2024 Feb 1;41(2). doi: 10.1093/molbev/msae011.
8
Simulation-based establishment of base pools for a hybrid breeding program in winter rapeseed.
Theor Appl Genet. 2024 Jan 8;137(1):16. doi: 10.1007/s00122-023-04519-3.
9
10
Stacked ensembles on basis of parentage information can predict hybrid performance with an accuracy comparable to marker-based GBLUP.
Front Plant Sci. 2023 Jul 21;14:1178902. doi: 10.3389/fpls.2023.1178902. eCollection 2023.

本文引用的文献

2
Towards social acceptance of plant breeding by genome editing.
Trends Plant Sci. 2015 Mar;20(3):145-9. doi: 10.1016/j.tplants.2015.01.010. Epub 2015 Feb 25.
3
Heterotic groups of tropical indica rice germplasm.
Theor Appl Genet. 2015 Mar;128(3):421-30. doi: 10.1007/s00122-014-2441-5. Epub 2014 Dec 16.
4
Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends.
Theor Appl Genet. 2014 Dec;127(12):2599-617. doi: 10.1007/s00122-014-2402-z. Epub 2014 Oct 12.
5
Predicting hybrid performance in rice using genomic best linear unbiased prediction.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12456-61. doi: 10.1073/pnas.1413750111. Epub 2014 Aug 11.
6
Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10037-44. doi: 10.1073/pnas.1409795111. Epub 2014 Jun 24.
7
Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
Genetics. 2014 Aug;197(4):1343-55. doi: 10.1534/genetics.114.165860. Epub 2014 May 21.
8
Split-gene system for hybrid wheat seed production.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9097-102. doi: 10.1073/pnas.1402836111. Epub 2014 May 12.
9
Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array.
Plant Biotechnol J. 2014 Aug;12(6):787-96. doi: 10.1111/pbi.12183. Epub 2014 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验