Wang Shichen, Wong Debbie, Forrest Kerrie, Allen Alexandra, Chao Shiaoman, Huang Bevan E, Maccaferri Marco, Salvi Silvio, Milner Sara G, Cattivelli Luigi, Mastrangelo Anna M, Whan Alex, Stephen Stuart, Barker Gary, Wieseke Ralf, Plieske Joerg, Lillemo Morten, Mather Diane, Appels Rudi, Dolferus Rudy, Brown-Guedira Gina, Korol Abraham, Akhunova Alina R, Feuillet Catherine, Salse Jerome, Morgante Michele, Pozniak Curtis, Luo Ming-Cheng, Dvorak Jan, Morell Matthew, Dubcovsky Jorge, Ganal Martin, Tuberosa Roberto, Lawley Cindy, Mikoulitch Ivan, Cavanagh Colin, Edwards Keith J, Hayden Matthew, Akhunov Eduard
Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
Plant Biotechnol J. 2014 Aug;12(6):787-96. doi: 10.1111/pbi.12183. Epub 2014 Mar 20.
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
高密度单核苷酸多态性(SNP)基因分型阵列是研究基因组多样性模式、推断群体中个体间的祖先关系以及在定位实验中研究标记-性状关联的有力工具。我们开发了一种包含约90000个基因相关SNP的基因分型阵列,并用于表征异源六倍体和异源四倍体小麦群体的遗传变异。该阵列包含了相当一部分在不同地理来源群体中都存在的全基因组分布的常见SNP。我们使用基于密度的空间聚类算法,以便在多倍体小麦获得的复杂数据集中进行高通量基因型分型。我们表明,这些无模型聚类算法在存在多个聚类的情况下能够提供准确的基因型分型,包括由于目标SNP位点的显著序列差异或基因缺失导致信号强度较低的聚类。检测低强度聚类的分析可以深入了解小麦群体中存在-缺失变异(PAV)的分布。利用八个作图群体的组合对来自小麦90K阵列的总共46977个SNP进行了遗传定位。所开发的阵列和聚类识别算法为推断多倍体小麦的详细单倍型结构提供了机会,并将成为多样性研究和调查小麦性状变异遗传基础的宝贵资源。