Suppr超能文献

优化植物育种中的亲本选择:比较用于构建基因型的元启发式算法。

Optimising parent selection in plant breeding: comparing metaheuristic algorithms for genotype building.

作者信息

Yadav S, Dillon S, McNeil M, Dinglasan E, Mago R, Dodds P, Hickey L, Hayes B J

机构信息

Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.

CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT, 2601, Australia.

出版信息

Theor Appl Genet. 2025 Sep 6;138(9):242. doi: 10.1007/s00122-025-05028-1.

Abstract

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV). Using a diverse wheat population of 583 lines genotyped for 29,972 SNPs, forming 7645 haplotype blocks and phenotyped for stripe rust scores, we assessed each algorithm's performance across fitness optimisation, convergence speed, and computational efficiency. GA consistently achieved high fitness and rapid convergence, while DE showed robustness but required longer runtime and careful tuning. PSO performed well under the OHS criterion but was less effective for OPV. SA, although computationally lighter, was less consistent in finding optimal solutions. Simulation over 100 breeding cycles showed that OHS outperformed both OPV and GEBV-based selection in long-term genetic gain and diversity retention. OHS maintained heterozygosity and additive variance, which are key for sustainable improvement, while GEBV selection led to early allele fixation. Our findings underscore the potential of GB strategies that prioritise the collective performance of parent sets rather than individual ranking to enhance selection outcomes in genomic-assisted breeding programmes.

摘要

在几种作物中已实施了在全基因组范围内堆叠理想单倍型以培育优良基因型的方法。最优单倍型选择中的一个主要挑战是确定一组共同包含所有理想单倍型的亲本,这是一个具有无数可能性的复杂组合问题。在本研究中,我们评估了元启发式搜索算法(MSA)——遗传算法(GA)、差分进化(DE)、粒子群优化(PSO)和模拟退火(SA)在两种基因型构建(GB)目标下优化亲本选择的性能:最优单倍型选择(OHS)和最优群体值(OPV)。我们使用了一个由583个品系组成的多样化小麦群体,对其进行了29972个单核苷酸多态性(SNP)的基因分型,形成了7645个单倍型块,并对条锈病评分进行了表型分析,我们评估了每种算法在适应度优化、收敛速度和计算效率方面的性能。GA始终实现了高适应度和快速收敛,而DE表现出稳健性,但运行时间较长且需要仔细调整。PSO在OHS标准下表现良好,但对OPV的效果较差。SA虽然计算量较小,但在寻找最优解方面不太一致。超过100个育种周期的模拟表明,在长期遗传增益和多样性保留方面,OHS优于OPV和基于基因组估计育种值(GEBV)的选择。OHS保持了杂合性和加性方差,这是可持续改良的关键,而GEBV选择导致了早期等位基因固定。我们的研究结果强调了GB策略的潜力,该策略优先考虑亲本集的集体表现而非个体排名,以提高基因组辅助育种计划的选择结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d43/12414015/d91a4f11a9da/122_2025_5028_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验