Suppr超能文献

21世纪的晶体学教育。

Crystallographic education in the 21st century.

作者信息

Gražulis Saulius, Sarjeant Amy Alexis, Moeck Peter, Stone-Sundberg Jennifer, Snyder Trevor J, Kaminsky Werner, Oliver Allen G, Stern Charlotte L, Dawe Louise N, Rychkov Denis A, Losev Evgeniy A, Boldyreva Elena V, Tanski Joseph M, Bernstein Joel, Rabeh Wael M, Kantardjieff Katherine A

机构信息

Vilnius University Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania.

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

出版信息

J Appl Crystallogr. 2015 Oct 13;48(Pt 6):1964-1975. doi: 10.1107/S1600576715016830. eCollection 2015 Dec 1.

Abstract

There are many methods that can be used to incorporate concepts of crystallography into the learning experiences of students, whether they are in elementary school, at university or part of the public at large. It is not always critical that those who teach crystallography have immediate access to diffraction equipment to be able to introduce the concepts of symmetry, packing or molecular structure in an age- and audience-appropriate manner. Crystallography can be used as a tool for teaching general chemistry concepts as well as general research techniques without ever having a student determine a crystal structure. Thus, methods for younger students to perform crystal growth experiments of simple inorganic salts, organic compounds and even metals are presented. For settings where crystallographic instrumentation is accessible (proximally or remotely), students can be involved in all steps of the process, from crystal growth, to data collection, through structure solution and refinement, to final publication. Several approaches based on the presentations in the MS92 Microsymposium at the IUCr 23rd Congress and General Assembly are reported. The topics cover methods for introducing crystallography to undergraduate students as part of a core chemistry curriculum; a successful short-course workshop intended to bootstrap researchers who rely on crystallography for their work; and efforts to bring crystallography to secondary school children and non-science majors. In addition to these workshops, demonstrations and long-format courses, open-format crystallographic databases and three-dimensional printed models as tools that can be used to excite target audiences and inspire them to pursue a deeper understanding of crystallography are described.

摘要

有许多方法可用于将晶体学概念融入学生的学习体验中,无论他们是小学生、大学生还是广大公众的一部分。对于讲授晶体学的人来说,并不总是需要立即使用衍射设备,才能以适合年龄和受众的方式介绍对称性、堆积或分子结构的概念。晶体学可以用作教授普通化学概念以及一般研究技术的工具,而无需让学生确定晶体结构。因此,本文介绍了让较年轻学生进行简单无机盐、有机化合物甚至金属晶体生长实验的方法。在可以使用晶体学仪器的环境中(近距离或远程),学生可以参与从晶体生长到数据收集、从结构解析和精修到最终发表的整个过程。本文报道了基于国际晶体学联盟第23届大会和全会MS92微观专题讨论会演讲内容的几种方法。主题包括作为核心化学课程一部分向本科生介绍晶体学的方法;一个成功的短期讲习班,旨在帮助依赖晶体学进行工作的研究人员;以及将晶体学引入中学生和非科学专业学生的努力。除了这些讲习班、演示和长篇课程外,还介绍了开放式晶体学数据库和三维打印模型,作为可用于激发目标受众并激励他们更深入理解晶体学的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f71/4665665/fa38891ed885/j-48-01964-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验