文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于研究相互作用磁性纳米颗粒中磁化率损失的改进型科菲模型。

An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles.

作者信息

Osaci Mihaela, Cacciola Matteo

机构信息

"Politehnica" University of Timisoara, Department of Electrical Engineering and Industrial Informatics, Piata Victoriei Nr. 2, 300006 Timisoara, jud. Timis, Romania.

University "Mediterranea" of Reggio Calabria, DICEAM, Via Graziella Feo di Vito, I-89100 Reggio Calabria, Italy.

出版信息

Beilstein J Nanotechnol. 2015 Nov 19;6:2173-82. doi: 10.3762/bjnano.6.223. eCollection 2015.


DOI:10.3762/bjnano.6.223
PMID:26665090
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4660916/
Abstract

BACKGROUND: Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes: Néel relaxation and Brownian relaxation. RESULTS: Since a consistent theory for the Néel relaxation time that is applicable to systems of interacting nanoparticles has not yet been developed, we adapted the Coffey theoretical model for the Néel relaxation time in external magnetic fields in order to consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more often used in literature, and a comparison with experimental data from literature have been carried out, in order to choose the optimal magnetic parameters of a nanoparticle system. CONCLUSION: In this way, we can study effects of the nanoparticle concentration on SLP in an acceptable range of frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia.

摘要

背景:纳米颗粒可用于生物医学应用,如磁共振成像的造影剂、肿瘤治疗或心血管疾病治疗。单畴纳米颗粒通过两种模式的磁化率损耗来散热:奈尔弛豫和布朗弛豫。 结果:由于尚未开发出适用于相互作用纳米颗粒系统的奈尔弛豫时间的一致理论,我们采用了科菲理论模型来计算外磁场中的奈尔弛豫时间,以便考虑局部偶极磁场。然后,我们获得了有效弛豫时间。有效弛豫时间进一步用于通过线性响应理论(LRT)获得比损耗功率(SLP)的值。为了选择纳米颗粒系统的最佳磁参数,我们对我们的模型与文献中更常用的离散取向模型进行了比较分析,并与文献中的实验数据进行了比较。 结论:通过这种方式,我们可以在生物医学应用(特别是磁热疗肿瘤治疗)的外磁场频率和幅度的可接受范围内研究纳米颗粒浓度对SLP的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/bdd8a20c24f3/Beilstein_J_Nanotechnol-06-2173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/9f94a595621e/Beilstein_J_Nanotechnol-06-2173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/aff3a43040d6/Beilstein_J_Nanotechnol-06-2173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/a80fba1be2af/Beilstein_J_Nanotechnol-06-2173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/100ade9892f5/Beilstein_J_Nanotechnol-06-2173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/3c10fba68e73/Beilstein_J_Nanotechnol-06-2173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/bdd8a20c24f3/Beilstein_J_Nanotechnol-06-2173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/9f94a595621e/Beilstein_J_Nanotechnol-06-2173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/aff3a43040d6/Beilstein_J_Nanotechnol-06-2173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/a80fba1be2af/Beilstein_J_Nanotechnol-06-2173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/100ade9892f5/Beilstein_J_Nanotechnol-06-2173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/3c10fba68e73/Beilstein_J_Nanotechnol-06-2173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/4660916/bdd8a20c24f3/Beilstein_J_Nanotechnol-06-2173-g007.jpg

相似文献

[1]
An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles.

Beilstein J Nanotechnol. 2015-11-19

[2]
Influence of the magnetic nanoparticle coating on the magnetic relaxation time.

Beilstein J Nanotechnol. 2020-8-12

[3]
Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation.

Phys Chem Chem Phys. 2020-10-15

[4]
Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia.

Sci Rep. 2023-10-2

[5]
Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.

Med Phys. 2023-7

[6]
Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.

J Phys Condens Matter. 2009-3-25

[7]
Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.

Nanotechnology. 2020-10-21

[8]
Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.

Nanomaterials (Basel). 2019-10-14

[9]
The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.

Sci Rep. 2019-3-8

[10]
Nonequilibrium response of magnetic nanoparticles to time-varying magnetic fields: Contributions from Brownian and Néel processes.

Phys Rev E. 2024-3

引用本文的文献

[1]
Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnFeO Nanoparticles.

Int J Mol Sci. 2020-10-21

[2]
Influence of the magnetic nanoparticle coating on the magnetic relaxation time.

Beilstein J Nanotechnol. 2020-8-12

本文引用的文献

[1]
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

J Magn Magn Mater. 2009-7

[2]
Magnetic particle hyperthermia--a promising tumour therapy?

Nanotechnology. 2014-11-14

[3]
Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

Nanoscale. 2014-10-21

[4]
Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors.

Nanomedicine. 2014-8

[5]
Magnetic interactions between nanoparticles.

Beilstein J Nanotechnol. 2010-12-28

[6]
Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment.

Int J Nanomedicine. 2011-3-25

[7]
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.

Med Phys. 2011-3

[8]
Magnetic properties of hydrothermally recrystallized magnetite crystals.

Science. 1987-6-5

[9]
Effect of an oblique magnetic field on the superparamagnetic relaxation time.

Phys Rev B Condens Matter. 1995-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索