Osaci Mihaela, Cacciola Matteo
"Politehnica" University of Timisoara, Department of Electrical Engineering and Industrial Informatics, Piata Victoriei Nr. 2, 300006 Timisoara, jud. Timis, Romania.
University "Mediterranea" of Reggio Calabria, DICEAM, Via Graziella Feo di Vito, I-89100 Reggio Calabria, Italy.
Beilstein J Nanotechnol. 2015 Nov 19;6:2173-82. doi: 10.3762/bjnano.6.223. eCollection 2015.
BACKGROUND: Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes: Néel relaxation and Brownian relaxation. RESULTS: Since a consistent theory for the Néel relaxation time that is applicable to systems of interacting nanoparticles has not yet been developed, we adapted the Coffey theoretical model for the Néel relaxation time in external magnetic fields in order to consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more often used in literature, and a comparison with experimental data from literature have been carried out, in order to choose the optimal magnetic parameters of a nanoparticle system. CONCLUSION: In this way, we can study effects of the nanoparticle concentration on SLP in an acceptable range of frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia.
背景:纳米颗粒可用于生物医学应用,如磁共振成像的造影剂、肿瘤治疗或心血管疾病治疗。单畴纳米颗粒通过两种模式的磁化率损耗来散热:奈尔弛豫和布朗弛豫。 结果:由于尚未开发出适用于相互作用纳米颗粒系统的奈尔弛豫时间的一致理论,我们采用了科菲理论模型来计算外磁场中的奈尔弛豫时间,以便考虑局部偶极磁场。然后,我们获得了有效弛豫时间。有效弛豫时间进一步用于通过线性响应理论(LRT)获得比损耗功率(SLP)的值。为了选择纳米颗粒系统的最佳磁参数,我们对我们的模型与文献中更常用的离散取向模型进行了比较分析,并与文献中的实验数据进行了比较。 结论:通过这种方式,我们可以在生物医学应用(特别是磁热疗肿瘤治疗)的外磁场频率和幅度的可接受范围内研究纳米颗粒浓度对SLP的影响。
Beilstein J Nanotechnol. 2015-11-19
Beilstein J Nanotechnol. 2020-8-12
Phys Chem Chem Phys. 2020-10-15
J Phys Condens Matter. 2009-3-25
Nanomaterials (Basel). 2019-10-14
Beilstein J Nanotechnol. 2020-8-12
J Magn Magn Mater. 2009-7
Nanotechnology. 2014-11-14
Beilstein J Nanotechnol. 2010-12-28
Int J Nanomedicine. 2011-3-25
Phys Rev B Condens Matter. 1995-12-1