文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

布朗松弛作为磁热疗中功率吸收机制的相关性。

The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.

机构信息

Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, CP 50018, Zaragoza, Spain.

Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, C/Mariano Esquillor s/n, CP 50018, Zaragoza, Spain.

出版信息

Sci Rep. 2019 Mar 8;9(1):3992. doi: 10.1038/s41598-019-40341-y.


DOI:10.1038/s41598-019-40341-y
PMID:30850704
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6408542/
Abstract

The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fluid hyperthermia. Its validity is restricted to low applied fields and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specific power absorption for highly anisotropic cobalt ferrite (CoFeO) magnetic nanoparticles with different average sizes and in different viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specific Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.

摘要

线性响应理论(LRT)是一种广泛接受的分析磁性纳米粒子用于磁流体热疗的功率吸收的框架。它的有效性仅限于低应用场和/或高度各向异性的磁性纳米粒子。在这里,我们对具有不同平均尺寸和不同粘性介质的高各向异性钴铁氧体(CoFeO)磁性纳米粒子的比功率吸收进行了系统的实验分析和数值计算。确定了布朗松弛作为这些粒子中磁损耗的起源的主导地位,并且比功率吸收(SPA)随载体液体粘度的变化与 LRT 近似一致。粘度对 SPA 的影响与设计 MNPs 以在体外和体内实验中加热细胞内介质有关。这里呈现的组合数值和实验分析揭示了使高各向异性 MNPs 不适合磁热疗的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/829e76915e9f/41598_2019_40341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/a36d2ad97224/41598_2019_40341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/2df1dcc99291/41598_2019_40341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/8cf9df793b40/41598_2019_40341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/e58f4f59ebba/41598_2019_40341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/829e76915e9f/41598_2019_40341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/a36d2ad97224/41598_2019_40341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/2df1dcc99291/41598_2019_40341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/8cf9df793b40/41598_2019_40341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/e58f4f59ebba/41598_2019_40341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc0/6408542/829e76915e9f/41598_2019_40341_Fig5_HTML.jpg

相似文献

[1]
The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.

Sci Rep. 2019-3-8

[2]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[3]
Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning.

Int J Mol Sci. 2019-9-19

[4]
An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles.

Beilstein J Nanotechnol. 2015-11-19

[5]
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.

J Am Chem Soc. 2007-3-7

[6]
In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space.

Sci Rep. 2016-12-7

[7]
Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating.

Nanomaterials (Basel). 2021-3-19

[8]
Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.

Nanoscale Res Lett. 2019-12-16

[9]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[10]
Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.

Med Phys. 2023-7

引用本文的文献

[1]
Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.

Front Drug Deliv. 2025-7-30

[2]
Unraveling the Mn substitution effect on the anisotropy control and magnetic hyperthermia of MnFeO nanoparticles.

Nanoscale Horiz. 2025-8-4

[3]
Multifunctional Magnetic Nanoparticles for Targeted Drug Delivery Against Cancer: A Review of Mechanisms, Applications, Consequences, Limitations, and Tailoring Strategies.

Ann Biomed Eng. 2025-6

[4]
Optimized Zn substituted CoFeO nanoparticles for high efficiency magnetic hyperthermia in biomedical applications.

Sci Rep. 2025-3-24

[5]
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

Adv Healthc Mater. 2025-2

[6]
Investigation of the Application of Reduced Graphene Oxide-SPION Quantum Dots for Magnetic Hyperthermia.

Nanomaterials (Basel). 2024-9-25

[7]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

[8]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[9]
Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia.

RSC Adv. 2024-5-14

[10]
Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1-xCoxFe2O4 nanohybrid.

Front Chem. 2024-3-7

本文引用的文献

[1]
Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes.

Nanoscale. 2017-4-20

[2]
Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.

Biomaterials. 2014-5-9

[3]
The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

Biomaterials. 2014-5-9

[4]
Physics of heat generation using magnetic nanoparticles for hyperthermia.

Int J Hyperthermia. 2013-10-16

[5]
Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.

Sci Rep. 2013-10-7

[6]
Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields.

Sci Rep. 2011-11-15

[7]
Cationic distribution and spin canting in CoFe2O4 nanoparticles.

J Phys Condens Matter. 2011-10-26

[8]
Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation.

J Phys Chem C Nanomater Interfaces. 2009

[9]
Exchange-coupled magnetic nanoparticles for efficient heat induction.

Nat Nanotechnol. 2011-6-26

[10]
Imaging intracellular viscosity of a single cell during photoinduced cell death.

Nat Chem. 2009-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索