School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2033, Australia.
Int J Mol Sci. 2023 Jun 25;24(13):10601. doi: 10.3390/ijms241310601.
Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.
分子马达存在于许多生物体中。离子驱动的旋转马达(IRM)是一种这样的分子机器,它需要离子穿过膜逆浓度梯度运动,以驱动旋转运动。细菌鞭毛马达(BFM)就是一个 IRM 的例子,它依赖于通过定子蛋白的离子运动来产生鞭毛的旋转。有许多离子可以被 BFM 定子用来驱动运动,并且一个表达多种定子变体的单个细菌可以使用不同的离子。利用祖先序列重建(ASR)和重建定子的功能分析,有望了解这些蛋白质是如何进化的,以及离子利用的分歧可能何时发生。在这篇综述中,我们讨论了现有的 BFM 定子和为它们提供动力的离子,以及最近利用 ASR 研究离子通道选择性的例子,以及如何将其应用于进一步研究 BFM 定子复合物。