Katare Rajesh, Rawal Shruti, Munasinghe Pujika Emani, Tsuchimochi Hirotsugu, Inagaki Tadakatsu, Fujii Yutaka, Dixit Parul, Umetani Keiji, Kangawa Kenji, Shirai Mikiyasu, Schwenke Daryl O
Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan.
Endocrinology. 2016 Feb;157(2):432-45. doi: 10.1210/en.2015-1799. Epub 2015 Dec 16.
Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.
目前用于治疗严重肢体缺血(CLI)的治疗策略成效有限。近期文献中使用细胞系的体外证据表明,肽激素胃饥饿素可能具有血管生成特性。在本研究中,我们旨在探究胃饥饿素是否能促进CLI小鼠模型缺血后的血管生成,并进一步确定支撑胃饥饿素促血管生成特性的机制途径。通过结扎雄性CD1小鼠的股动脉诱导CLI。然后将动物随机分为两组,连续14天分别接受赋形剂或酰化胃饥饿素(150μg/kg皮下注射)。随后,使用同步辐射微血管造影术评估后肢灌注情况。接着收集后续组织样本进行分子和组织学分析。胃饥饿素治疗通过促进缺血后肢内结构和功能均正常的新毛细血管和小动脉(内径小于50μm)生成,显著改善了肢体灌注;对乙酰胆碱的强大内皮依赖性血管舒张反应证明了这一点。分子分析显示,胃饥饿素的血管生成特性与促生存的Akt/血管内皮生长因子/Bcl-2信号级联激活有关,从而减少凋亡细胞死亡及随后的纤维化。此外,胃饥饿素治疗激活了促血管生成(miR-126和miR-132)和抗纤维化(miR-30a)的微小RNA(miR),同时抑制了抗血管生成(miR-92a和miR-206)的miR。重要的是,体外敲低关键促血管生成miR(miR-126和miR-132)可抑制胃饥饿素的血管生成潜力。因此,这些结果表明,胃饥饿素用于CLI早期治疗的临床应用可能是一种有前景且有效的诱导修复性血管生成的方法,可通过调节关键分子因子来实现。