Godier-Furnémont Amandine F G, Tiburcy Malte, Wagner Eva, Dewenter Matthias, Lämmle Simon, El-Armouche Ali, Lehnart Stephan E, Vunjak-Novakovic Gordana, Zimmermann Wolfram-Hubertus
Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August-University Göttingen, 37075, Germany; Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075, Germany.
Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August-University Göttingen, 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075, Germany.
Biomaterials. 2015 Aug;60:82-91. doi: 10.1016/j.biomaterials.2015.03.055. Epub 2015 May 15.
A hallmark of mature mammalian ventricular myocardium is a positive force-frequency relationship (FFR). Despite evidence of organotypic structural and molecular maturation, a positive FFR has not been observed in mammalian tissue engineered heart muscle. We hypothesized that concurrent mechanical and electrical stimulation at frequencies matching physiological heart rate will result in functional maturation. We investigated the role of biomimetic mechanical and electrical stimulation in functional maturation in engineered heart muscle (EHM). Following tissue consolidation, EHM were subjected to electrical field stimulation at 0, 2, 4, or 6 Hz for 5 days, while strained on flexible poles to facilitate auxotonic contractions. EHM stimulated at 2 and 4 Hz displayed a similarly enhanced inotropic reserve, but a clearly diverging FFR. The positive FFR in 4 Hz stimulated EHM was associated with reduced calcium sensitivity, frequency-dependent acceleration of relaxation, and enhanced post-rest potentiation. This was paralleled on the cellular level with improved calcium storage and release capacity of the sarcoplasmic reticulum and enhanced T-tubulation. We conclude that electro-mechanical stimulation at a physiological frequency supports functional maturation in mammalian EHM. The observed positive FFR in EHM has important implications for the applicability of EHM in cardiovascular research.
成熟哺乳动物心室心肌的一个标志是正力-频率关系(FFR)。尽管有证据表明存在器官样结构和分子成熟,但在哺乳动物组织工程心肌中尚未观察到正FFR。我们假设,以与生理心率相匹配的频率同时进行机械和电刺激将导致功能成熟。我们研究了仿生机械和电刺激在工程心肌(EHM)功能成熟中的作用。在组织巩固后,EHM在0、2、4或6Hz下接受电场刺激5天,同时在柔性杆上施加应变以促进辅助性收缩。在2Hz和4Hz刺激下的EHM显示出类似增强的变力性储备,但FFR明显不同。在4Hz刺激的EHM中,正FFR与钙敏感性降低、频率依赖性松弛加速以及静息后增强有关。在细胞水平上,这与肌浆网钙储存和释放能力的改善以及T小管形成的增强相平行。我们得出结论,生理频率的机电刺激支持哺乳动物EHM的功能成熟。在EHM中观察到的正FFR对EHM在心血管研究中的适用性具有重要意义。