Mickolajczyk Keith J, Deffenbaugh Nathan C, Arroyo Jaime Ortega, Andrecka Joanna, Kukura Philipp, Hancock William O
Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Intercollege Graduate Degree Program in Bioengineering, Pennsylvania State University, University Park, PA 16802;
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7186-93. doi: 10.1073/pnas.1517638112. Epub 2015 Dec 16.
To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head-bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.
为了剖析在生理ATP条件下驱动蛋白-1步移循环背后的结构转变动力学,我们使用干涉散射显微镜来追踪附着在持续步移二聚体中各个马达结构域上的金纳米颗粒的位置。标记的头部稳定地位于相距16.4纳米的位置,对应于微管结合状态,以及一个先前未见的中间位置,对应于束缚状态。通过改变核苷酸条件并进行平行的停流动力学分析,确定了这些结构转变背后的化学转变。在ATP饱和时,驱动蛋白-1在每个步移循环的一半时间里有一个头部结合,为两个限速转变中的每一个指定了一种结构状态。对不同核苷酸条件下步移动力学的分析表明,需要结合ATP才能正确进入单头结合状态,而水解对于以生理速率离开该状态是必要的。这些转变不同于标准模型,在标准模型中,ATP结合驱动马达的柔性颈部连接结构域完全对接。因此,这项工作定义了一个机械化学转变的共识序列,可用于理解驱动蛋白超家族中的功能多样性。