Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, United Kingdon.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1837-42. doi: 10.1073/pnas.1319848111. Epub 2014 Jan 21.
Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities, but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin--the transport motor kinesin-1--is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests otherwise. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and determination of structure at subnanometer resolution, we have visualized conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. After ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drug-binding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N terminus is enzymatically active, and ATP-dependent neck-linker movement and motility are defective, although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N terminus in collaboration with the motor's structured neck-linker and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements.
驱动蛋白负责多种基于微管的、ATP 依赖性的功能。它们的马达结构域驱动这些活动,但指定这些多样化和基本细胞活动的分子适应机制还知之甚少。人们一直认为,第一个被识别的驱动蛋白——运输马达驱动蛋白-1——是整个超家族的机械范例,但越来越多的证据表明并非如此。为了解决我们对驱动蛋白超家族功能分化的分子基础理解不足的问题,我们研究了驱动蛋白-5,它是有丝分裂所必需的马达,其抑制会阻止细胞分裂。我们使用低温电子显微镜和亚纳米分辨率的结构测定,可视化了微管结合的人源驱动蛋白-5 马达结构域在其 ATP 酶循环的连续步骤中的构象。在 ATP 水解后,活性位点中核苷酸依赖性构象变化被别构传递到马达结构域的旋转和药物结合环 L5 的展开。此外,对马达步进至关重要的机械颈部连接元件经历离散的、有序的位移。我们还观察到马达 N 端的大重定向,这表明它通过控制颈部连接元件的构象对驱动蛋白-5 功能的重要性。缺乏这种 N 端的驱动蛋白-5 突变体具有酶活性,并且 ATP 依赖性颈部连接元件的运动和运动能力有缺陷,尽管没有完全消除。驱动蛋白-5 的机械化学的所有这些方面都与驱动蛋白-1 不同。我们的发现直接证明了驱动蛋白-5 N 端与马达结构颈部连接元件协同作用的调节作用,并强调了驱动蛋白马达结构域内的多种适应机制,根据不同的功能要求调整它们的机械化学性质。