Yabe Taijiro, Takada Shinji
Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
Dev Growth Differ. 2016 Jan;58(1):31-42. doi: 10.1111/dgd.12249. Epub 2015 Dec 17.
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
体节是在脊椎动物胚胎发育过程中观察到的最显著的分节结构,其分节性保留了成体中椎骨和肌肉的特征结构。在脊椎动物体节发生过程中,上皮化细胞边界的顺序形成产生了体节。根据“时钟和波前模型”,体节的周期性和顺序性产生是通过整合由分割时钟和波前提供的时空信息来实现的。在体节前体中胚层的前部区域,分割时钟和波前之间的协同作用通过多种过程实现体节的形态发生,如确定体节边界位置、产生形态学边界以及在体节内建立头尾极性。最近,使用包括小鼠、斑马鱼和鸡在内的各种模式动物进行的大量研究逐渐揭示了“时钟和波前”模型的分子层面以及将分割时钟和波前与体节形态发生的多个过程联系起来的分子机制。在这篇综述中,我们首先总结了关于时钟和波前潜在分子机制的当前知识,然后描述了体节形态发生的三个过程的分子机制。特别是,我们将讨论脊椎动物体节发生分子网络中的保守性和多样性,重点关注用于遗传分析的两种典型模式动物,即小鼠和斑马鱼。在这篇综述中,我们基于“分割时钟”和“波前”提供的时空信息,描述了体节产生的分子机制,重点关注从小鼠和斑马鱼获得的证据。