Suppr超能文献

通过调节N-钙黏蛋白依赖性黏附,将体节分割时钟与体节形态发生联系起来。

couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion.

作者信息

Chal Jérome, Guillot Charlène, Pourquié Olivier

机构信息

Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden 67400, France.

出版信息

Development. 2017 Feb 15;144(4):664-676. doi: 10.1242/dev.143974. Epub 2017 Jan 13.

Abstract

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin () in this process. We showed that in chicken and mouse embryos, expression is tightly regulated by the clock and wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of in chicken embryos disrupted somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC-expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus, periodic expression of PAPC in the anterior PSM triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.

摘要

脊椎动物的体节形成以间充质前体节中胚层(PSM)周期性形成上皮性体节为特征。目前对于由体节时钟传递的节律性信号脉冲如何转化为体节的周期性形态发生仍知之甚少。在此,我们聚焦于近轴原钙黏蛋白()在此过程中的作用。我们发现,在鸡和小鼠胚胎中,在后侧PSM中,的表达受时钟和波前系统严格调控。我们观察到,PAPC与N-钙黏蛋白(CDH2)呈现出显著的互补模式,标记了前侧PSM中未来体节边界的界面。在鸡胚胎中对进行功能获得和功能缺失实验,通过改变PSM细胞依赖CDH2的上皮化过程,破坏了体节分割。我们的数据表明,网格蛋白介导的内吞作用在表达PAPC的细胞中增强,随后影响未来体节前侧区域CDH2的内化。这进而产生了一个差异黏附界面,使得形成定义体节边界的无细胞裂隙。因此,PAPC在前侧PSM中的周期性表达触发了CDH2的节律性内吞作用,从而实现体节的节段性去黏附及个体化。

相似文献

1
couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion.
Development. 2017 Feb 15;144(4):664-676. doi: 10.1242/dev.143974. Epub 2017 Jan 13.
2
The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos.
Curr Biol. 2000 Jul 13;10(14):821-30. doi: 10.1016/s0960-9822(00)00580-7.
5
A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis.
Curr Biol. 2016 Feb 22;26(4):542-9. doi: 10.1016/j.cub.2015.12.055. Epub 2016 Feb 4.

引用本文的文献

1
Dystrophin deficiency impairs cell junction formation during embryonic myogenesis from pluripotent stem cells.
iScience. 2024 Jun 11;27(7):110242. doi: 10.1016/j.isci.2024.110242. eCollection 2024 Jul 19.
2
Cellular and molecular control of vertebrate somitogenesis.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):517-533. doi: 10.1038/s41580-024-00709-z. Epub 2024 Feb 28.
3
Ultrastructure of the lamprey head mesoderm reveals evolution of the vertebrate head.
iScience. 2023 Nov 13;26(12):108338. doi: 10.1016/j.isci.2023.108338. eCollection 2023 Dec 15.
4
Dystrophin deficiency impairs cell junction formation during embryonic myogenesis.
bioRxiv. 2024 Apr 8:2023.12.05.569919. doi: 10.1101/2023.12.05.569919.
5
Epithelial-to-mesenchymal plasticity from development to disease: An introduction to the special issue.
Genesis. 2024 Feb;62(1):e23581. doi: 10.1002/dvg.23581. Epub 2023 Dec 14.
6
Reconstruction and deconstruction of human somitogenesis in vitro.
Nature. 2023 Feb;614(7948):500-508. doi: 10.1038/s41586-022-05655-4. Epub 2022 Dec 21.
7
Adhesion-Based Self-Organization in Tissue Patterning.
Annu Rev Cell Dev Biol. 2022 Oct 6;38:349-374. doi: 10.1146/annurev-cellbio-120420-100215. Epub 2022 May 13.
8
Time and space in segmentation.
Interface Focus. 2021 Apr 16;11(3):20200049. doi: 10.1098/rsfs.2020.0049. eCollection 2021 Jun 6.
9
Protocadherins at the Crossroad of Signaling Pathways.
Front Mol Neurosci. 2020 Jun 30;13:117. doi: 10.3389/fnmol.2020.00117. eCollection 2020.
10
Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish.
Histochem Cell Biol. 2020 Nov;154(5):463-480. doi: 10.1007/s00418-020-01887-5. Epub 2020 Jun 1.

本文引用的文献

1
A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis.
Curr Biol. 2016 Feb 22;26(4):542-9. doi: 10.1016/j.cub.2015.12.055. Epub 2016 Feb 4.
2
A self-organized biomechanical network drives shape changes during tissue morphogenesis.
Nature. 2015 Aug 20;524(7565):351-5. doi: 10.1038/nature14603. Epub 2015 Jul 27.
3
Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology.
Dev Cell. 2015 Jul 6;34(1):33-44. doi: 10.1016/j.devcel.2015.05.005. Epub 2015 Jun 18.
4
PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation.
J Cell Biol. 2015 Mar 16;208(6):839-56. doi: 10.1083/jcb.201409026.
5
Signalling dynamics in vertebrate segmentation.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):709-21. doi: 10.1038/nrm3891.
6
Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin.
J Cell Biol. 2012 Aug 20;198(4):695-709. doi: 10.1083/jcb.201110076.
7
The mechanism of somite formation in mice.
Curr Opin Genet Dev. 2012 Aug;22(4):331-8. doi: 10.1016/j.gde.2012.05.004. Epub 2012 Jun 27.
9
Evolutionary plasticity of segmentation clock networks.
Development. 2011 Jul;138(13):2783-92. doi: 10.1242/dev.063834.
10
Tissue morphogenesis coupled with cell shape changes.
Curr Opin Genet Dev. 2010 Aug;20(4):443-7. doi: 10.1016/j.gde.2010.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验