Meijer Hedda A, Hetherington Adam, Johnson Sara J, Gallagher Rosie L, Hussein Izzah N, Weng Yuqi, Rae Jess M, Noordzij Tomas E J C, Kalamara Margarita, Macartney Thomas J, Davidson Lindsay, Martin David M A, Gierlinski Marek, Davies Paul, Sonnen Katharina F, Murray Philip J, Dale J Kim
Division of Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
Division of Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Genes Dev. 2025 Sep 2;39(17-18):1025-1044. doi: 10.1101/gad.352909.125.
The segmentation clock is a molecular oscillator that regulates the timing of somite formation in the developing vertebrate embryo. NOTCH signaling is one of the key pathways required for proper functioning of the segmentation clock. Aberrant NOTCH signaling results in developmental abnormalities such as congenital scoliosis as well as diseases such as T-cell acute lymphoblastic lymphoma (T-ALL). In this study, we analyzed the effects of a mutation detected in T-ALL patients on somitogenesis using human iPSC-derived PSM cells and somitoids. Mutation of NOTCH1 serine 2513 into alanine compromises the interaction of Notch intracellular domain (NICD) with the F-box protein FBXW7 and consequently increases NICD stability and NICD levels in PSM cells. Moreover, the mutation impairs several aspects of clock gene oscillations such as signal intensity, periodicity, directionality of the oscillations, and the ability to sustain oscillations. Furthermore, it restricts the ability of somitoids to polarize, elongate, and form paired segments. The data suggest a mechanism by which post-translational modification of a key segmentation clock component plays a crucial role in vertebrate axis segmentation.
体节分割时钟是一种分子振荡器,可调节发育中的脊椎动物胚胎中体节形成的时间。NOTCH信号通路是体节分割时钟正常运作所需的关键通路之一。NOTCH信号异常会导致发育异常,如先天性脊柱侧凸,以及疾病,如T细胞急性淋巴细胞白血病(T-ALL)。在本研究中,我们使用人诱导多能干细胞衍生的体节中胚层细胞和类体节分析了在T-ALL患者中检测到的一种突变对体节发生的影响。NOTCH1丝氨酸2513突变为丙氨酸会损害Notch细胞内结构域(NICD)与F-box蛋白FBXW7的相互作用,从而增加PSM细胞中NICD的稳定性和NICD水平。此外,该突变会损害时钟基因振荡的几个方面,如信号强度、周期性、振荡的方向性以及维持振荡的能力。此外,它还限制了类体节极化、伸长和形成成对节段的能力。这些数据表明了一种机制,即关键体节分割时钟组件的翻译后修饰在脊椎动物轴分割中起着至关重要的作用。