Suppr超能文献

氧化还原是一种全球生物设备信息处理模式。

Redox Is a Global Biodevice Information Processing Modality.

作者信息

Kim Eunkyoung, Li Jinyang, Kang Mijeong, Kelly Deanna L, Chen Shuo, Napolitano Alessandra, Panzella Lucia, Shi Xiaowen, Yan Kun, Wu Si, Shen Jana, Bentley William E, Payne Gregory F

机构信息

Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA.

Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA.

出版信息

Proc IEEE Inst Electr Electron Eng. 2019 Jul;107(7):1402-1424. doi: 10.1109/JPROC.2019.2908582. Epub 2019 Apr 29.

Abstract

Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.

摘要

生物学以其通过以下两种方式进行通信的能力而闻名

(i)分子特异性信号传导方式,以及(ii)与离子跨生物膜流动相关的全局作用电方式。新兴研究表明,生物学使用了第三种通信方式,即与通过还原/氧化(redox)反应的电子流动相关的方式。这种氧化还原信号传导方式似乎具有全局作用,并且兼具分子和电方式的特征:由于水溶液中不存在自由电子,电子必须流经可以在两种状态之间切换的分子中间体——有电子(还原态)或无电子(氧化态)。重要的是,这种全局氧化还原方式可以通过使用便捷的电化学仪器,利用其电学特性轻松实现。在本综述中,我们解释这种氧化还原方式,描述我们的电化学测量,并提供四个例子,证明氧化还原能够实现生物学与电子学之间的通信。前两个例子说明了氧化还原探测如何获取生物学相关信息。后两个例子说明了氧化还原输入如何转换生物学相关的转变以进行图案化以及诱导用于两跳分子通信的合成生物学收发器。总之,我们认为氧化还原提供了一种独特的能力来架起生物设备通信的桥梁,因为简单的电化学方法能够全局获取生物学上有意义的信息。此外,我们设想氧化还原可能会促进信息论在生物科学中的应用。

相似文献

1
Redox Is a Global Biodevice Information Processing Modality.氧化还原是一种全球生物设备信息处理模式。
Proc IEEE Inst Electr Electron Eng. 2019 Jul;107(7):1402-1424. doi: 10.1109/JPROC.2019.2908582. Epub 2019 Apr 29.
2
Catechol-Based Capacitor for Redox-Linked Bioelectronics.用于氧化还原相关生物电子学的基于儿茶酚的电容器。
ACS Appl Electron Mater. 2019 Aug 27;1(8):1337-1347. doi: 10.1021/acsaelm.9b00272. Epub 2019 Jul 3.
4

引用本文的文献

6
Sensing the future of bio-informational engineering.感知生物信息工程的未来。
Nat Commun. 2021 Jan 15;12(1):388. doi: 10.1038/s41467-020-20764-2.
8
Catechol-Based Capacitor for Redox-Linked Bioelectronics.用于氧化还原相关生物电子学的基于儿茶酚的电容器。
ACS Appl Electron Mater. 2019 Aug 27;1(8):1337-1347. doi: 10.1021/acsaelm.9b00272. Epub 2019 Jul 3.

本文引用的文献

1
Electrochemically Directed Assembly of Designer Coiled-Coil Telechelic Proteins.设计型卷曲螺旋末端蛋白质的电化学定向组装
ACS Biomater Sci Eng. 2017 Dec 11;3(12):3195-3206. doi: 10.1021/acsbiomaterials.7b00599. Epub 2017 Oct 10.
2
Magnetically Assisted Electrodeposition of Aligned Collagen Coatings.取向胶原涂层的磁辅助电沉积
ACS Biomater Sci Eng. 2018 May 14;4(5):1528-1535. doi: 10.1021/acsbiomaterials.7b01038. Epub 2018 Apr 4.
8
Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.贻贝启发的酶的电交联用于生物传感器的开发。
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18574-18584. doi: 10.1021/acsami.8b04764. Epub 2018 May 25.
9
Engineering bacterial motility towards hydrogen-peroxide.工程细菌向过氧化氢的运动。
PLoS One. 2018 May 11;13(5):e0196999. doi: 10.1371/journal.pone.0196999. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验