Kim Eunkyoung, Li Jinyang, Kang Mijeong, Kelly Deanna L, Chen Shuo, Napolitano Alessandra, Panzella Lucia, Shi Xiaowen, Yan Kun, Wu Si, Shen Jana, Bentley William E, Payne Gregory F
Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA.
Proc IEEE Inst Electr Electron Eng. 2019 Jul;107(7):1402-1424. doi: 10.1109/JPROC.2019.2908582. Epub 2019 Apr 29.
Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.
(i)分子特异性信号传导方式,以及(ii)与离子跨生物膜流动相关的全局作用电方式。新兴研究表明,生物学使用了第三种通信方式,即与通过还原/氧化(redox)反应的电子流动相关的方式。这种氧化还原信号传导方式似乎具有全局作用,并且兼具分子和电方式的特征:由于水溶液中不存在自由电子,电子必须流经可以在两种状态之间切换的分子中间体——有电子(还原态)或无电子(氧化态)。重要的是,这种全局氧化还原方式可以通过使用便捷的电化学仪器,利用其电学特性轻松实现。在本综述中,我们解释这种氧化还原方式,描述我们的电化学测量,并提供四个例子,证明氧化还原能够实现生物学与电子学之间的通信。前两个例子说明了氧化还原探测如何获取生物学相关信息。后两个例子说明了氧化还原输入如何转换生物学相关的转变以进行图案化以及诱导用于两跳分子通信的合成生物学收发器。总之,我们认为氧化还原提供了一种独特的能力来架起生物设备通信的桥梁,因为简单的电化学方法能够全局获取生物学上有意义的信息。此外,我们设想氧化还原可能会促进信息论在生物科学中的应用。