Suppr超能文献

系统生物学:内分泌相关癌症研究中多尺度建模的观点。

Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers.

机构信息

Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA.

Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.

出版信息

Endocr Relat Cancer. 2019 Jun;26(6):R345-R368. doi: 10.1530/ERC-18-0309.

Abstract

Drawing on concepts from experimental biology, computer science, informatics, mathematics and statistics, systems biologists integrate data across diverse platforms and scales of time and space to create computational and mathematical models of the integrative, holistic functions of living systems. Endocrine-related cancers are well suited to study from a systems perspective because of the signaling complexities arising from the roles of growth factors, hormones and their receptors as critical regulators of cancer cell biology and from the interactions among cancer cells, normal cells and signaling molecules in the tumor microenvironment. Moreover, growth factors, hormones and their receptors are often effective targets for therapeutic intervention, such as estrogen biosynthesis, estrogen receptors or HER2 in breast cancer and androgen receptors in prostate cancer. Given the complexity underlying the molecular control networks in these cancers, a simple, intuitive understanding of how endocrine-related cancers respond to therapeutic protocols has proved incomplete and unsatisfactory. Systems biology offers an alternative paradigm for understanding these cancers and their treatment. To correctly interpret the results of systems-based studies requires some knowledge of how in silico models are built, and how they are used to describe a system and to predict the effects of perturbations on system function. In this review, we provide a general perspective on the field of cancer systems biology, and we explore some of the advantages, limitations and pitfalls associated with using predictive multiscale modeling to study endocrine-related cancers.

摘要

从实验生物学、计算机科学、信息学、数学和统计学的概念出发,系统生物学家整合来自不同平台和时空尺度的数据,创建关于生命系统综合整体功能的计算和数学模型。由于生长因子、激素及其受体作为癌细胞生物学关键调节剂的作用以及肿瘤微环境中癌细胞、正常细胞和信号分子之间的相互作用所产生的信号复杂性,内分泌相关癌症非常适合从系统角度进行研究。此外,生长因子、激素及其受体通常是治疗干预的有效靶点,例如乳腺癌中的雌激素生物合成、雌激素受体或 HER2 以及前列腺癌中的雄激素受体。鉴于这些癌症中分子调控网络的复杂性,对于内分泌相关癌症如何对治疗方案产生反应的简单直观的理解已被证明是不完整和不令人满意的。系统生物学为理解这些癌症及其治疗提供了另一种范例。要正确解释基于系统的研究结果,需要了解一些关于如何构建计算机模型以及如何使用它们来描述系统和预测对系统功能的干扰的影响的知识。在这篇综述中,我们提供了癌症系统生物学领域的一个总体视角,并探讨了使用预测性多尺度建模来研究内分泌相关癌症的一些优点、局限性和陷阱。

相似文献

2
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
3
Multiscale modeling for biologists.生物学家的多尺度建模。
Wiley Interdiscip Rev Syst Biol Med. 2009 Jul-Aug;1(1):4-14. doi: 10.1002/wsbm.33.
9
Mathematical and Computational Modeling in Complex Biological Systems.复杂生物系统中的数学与计算建模
Biomed Res Int. 2017;2017:5958321. doi: 10.1155/2017/5958321. Epub 2017 Mar 13.
10
Multiscale cancer modeling.多尺度癌症建模。
Annu Rev Biomed Eng. 2011 Aug 15;13:127-55. doi: 10.1146/annurev-bioeng-071910-124729.

引用本文的文献

5
Programmatic modeling for biological systems.生物系统的程序建模
Curr Opin Syst Biol. 2021 Sep;27. doi: 10.1016/j.coisb.2021.05.004. Epub 2021 May 24.

本文引用的文献

1
CRISPR-Cas: a tool for cancer research and therapeutics.CRISPR-Cas:癌症研究与治疗的工具。
Nat Rev Clin Oncol. 2019 May;16(5):281-295. doi: 10.1038/s41571-019-0166-8.
2
Modeling the dynamic behavior of biochemical regulatory networks.生物化学调控网络的动态行为建模。
J Theor Biol. 2019 Feb 7;462:514-527. doi: 10.1016/j.jtbi.2018.11.034. Epub 2018 Nov 28.
4
A primer on deep learning in genomics.深度学习在基因组学中的应用简介。
Nat Genet. 2019 Jan;51(1):12-18. doi: 10.1038/s41588-018-0295-5. Epub 2018 Nov 26.
9
Variant Review with the Integrative Genomics Viewer.使用综合基因组浏览器进行变异审查。
Cancer Res. 2017 Nov 1;77(21):e31-e34. doi: 10.1158/0008-5472.CAN-17-0337.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验