Suppr超能文献

使用临床模型和77个独立风险相关单核苷酸多态性对50岁以下女性进行乳腺癌风险预测:澳大利亚乳腺癌家族登记处

Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry.

作者信息

Dite Gillian S, MacInnis Robert J, Bickerstaffe Adrian, Dowty James G, Allman Richard, Apicella Carmel, Milne Roger L, Tsimiklis Helen, Phillips Kelly-Anne, Giles Graham G, Terry Mary Beth, Southey Melissa C, Hopper John L

机构信息

Centre for Epidemiology and Biostatistics, The University of Melbourne, Victoria, Australia.

Centre for Epidemiology and Biostatistics, The University of Melbourne, Victoria, Australia. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia.

出版信息

Cancer Epidemiol Biomarkers Prev. 2016 Feb;25(2):359-65. doi: 10.1158/1055-9965.EPI-15-0838. Epub 2015 Dec 16.

Abstract

BACKGROUND

The extent to which clinical breast cancer risk prediction models can be improved by including information on known susceptibility SNPs is not known.

METHODS

Using 750 cases and 405 controls from the population-based Australian Breast Cancer Family Registry who were younger than 50 years at diagnosis and recruitment, respectively, Caucasian and not BRCA1 or BRCA2 mutation carriers, we derived absolute 5-year risks of breast cancer using the BOADICEA, BRCAPRO, BCRAT, and IBIS risk prediction models and combined these with a risk score based on 77 independent risk-associated SNPs. We used logistic regression to estimate the OR per adjusted SD for log-transformed age-adjusted 5-year risks. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC). Calibration was assessed using the Hosmer-Lemeshow goodness-of-fit test. We also constructed reclassification tables and calculated the net reclassification improvement.

RESULTS

The ORs for BOADICEA, BRCAPRO, BCRAT, and IBIS were 1.80, 1.75, 1.67, and 1.30, respectively. When combined with the SNP-based score, the corresponding ORs were 1.96, 1.89, 1.80, and 1.52. The corresponding AUCs were 0.66, 0.65, 0.64, and 0.57 for the risk prediction models, and 0.70, 0.69, 0.66, and 0.63 when combined with the SNP-based score.

CONCLUSIONS

By combining a 77 SNP-based score with clinical models, the AUC for predicting breast cancer before age 50 years improved by >20%.

IMPACT

Our estimates of the increased performance of clinical risk prediction models from including genetic information could be used to inform targeted screening and prevention.

摘要

背景

目前尚不清楚通过纳入已知易感性单核苷酸多态性(SNP)信息,临床乳腺癌风险预测模型能在多大程度上得到改进。

方法

我们从基于人群的澳大利亚乳腺癌家族登记处选取了750例病例和405例对照,他们在诊断和招募时年龄分别小于50岁,均为白种人且非BRCA1或BRCA2突变携带者。我们使用BOADICEA、BRCAPRO、BCRAT和IBIS风险预测模型得出乳腺癌的绝对5年风险,并将这些风险与基于77个独立风险相关SNP的风险评分相结合。我们使用逻辑回归来估计对数转换后的年龄调整5年风险每调整标准差的比值比(OR)。通过受试者操作特征曲线下面积(AUC)评估辨别力。使用Hosmer-Lemeshow拟合优度检验评估校准情况。我们还构建了重新分类表并计算了净重新分类改善情况。

结果

BOADICEA、BRCAPRO、BCRAT和IBIS的OR分别为1.80、1.75、1.67和1.30。与基于SNP的评分相结合时,相应的OR分别为1.96、1.89、1.80和1.52。风险预测模型的相应AUC分别为0.66、0.65、0.64和0.57,与基于SNP的评分相结合时分别为0.70、0.69、0.66和0.63。

结论

通过将基于77个SNP的评分与临床模型相结合,预测50岁前乳腺癌的AUC提高了>20%。

影响

我们对纳入遗传信息后临床风险预测模型性能提升的估计可用于指导靶向筛查和预防。

相似文献

1
Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry.
Cancer Epidemiol Biomarkers Prev. 2016 Feb;25(2):359-65. doi: 10.1158/1055-9965.EPI-15-0838. Epub 2015 Dec 16.
2
10-year performance of four models of breast cancer risk: a validation study.
Lancet Oncol. 2019 Apr;20(4):504-517. doi: 10.1016/S1470-2045(18)30902-1. Epub 2019 Feb 21.
4
SNPs and breast cancer risk prediction for African American and Hispanic women.
Breast Cancer Res Treat. 2015 Dec;154(3):583-9. doi: 10.1007/s10549-015-3641-7. Epub 2015 Nov 20.
5
Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model.
Breast Cancer Res Treat. 2013 Jun;139(3):887-96. doi: 10.1007/s10549-013-2610-2. Epub 2013 Jun 18.
7
Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information.
J Natl Cancer Inst. 2010 Nov 3;102(21):1618-27. doi: 10.1093/jnci/djq388. Epub 2010 Oct 18.
8
Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk.
J Natl Cancer Inst. 2015 May 8;107(7). doi: 10.1093/jnci/djv124. Print 2015 Jul.

引用本文的文献

1
Association of Polygenic-Based Breast Cancer Risk Prediction With Patient Management.
JCO Precis Oncol. 2025 May;9:e2400716. doi: 10.1200/PO-24-00716. Epub 2025 May 7.
2
Guidance for the Clinical Use of the Breast Cancer Polygenic Risk Scores.
Cancers (Basel). 2025 Mar 21;17(7):1056. doi: 10.3390/cancers17071056.
4
ReClassification of Patients with Ambiguous CA125 for Optimised Pre-Surgical Triage.
Diagnostics (Basel). 2024 Mar 22;14(7):671. doi: 10.3390/diagnostics14070671.
7
Addition of polygenic risk score to a risk calculator for prediction of breast cancer in US Black women.
Breast Cancer Res. 2024 Jan 2;26(1):2. doi: 10.1186/s13058-023-01748-8.
9
Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention.
Med Rev (2021). 2022 Feb 14;1(2):129-149. doi: 10.1515/mr-2021-0025. eCollection 2021 Dec.

本文引用的文献

2
Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk.
J Natl Cancer Inst. 2015 May 8;107(7). doi: 10.1093/jnci/djv124. Print 2015 Jul.
3
Prediction of breast cancer risk based on profiling with common genetic variants.
J Natl Cancer Inst. 2015 Apr 8;107(5). doi: 10.1093/jnci/djv036. Print 2015 May.
4
The contributions of breast density and common genetic variation to breast cancer risk.
J Natl Cancer Inst. 2015 Mar 4;107(5). doi: 10.1093/jnci/dju397. Print 2015 May.
5
Risk determination and prevention of breast cancer.
Breast Cancer Res. 2014 Sep 28;16(5):446. doi: 10.1186/s13058-014-0446-2.
6
Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer.
Breast Cancer Res Treat. 2014 Dec;148(3):665-73. doi: 10.1007/s10549-014-3209-y. Epub 2014 Nov 19.
7
Recent BRCAPRO upgrades significantly improve calibration.
Cancer Epidemiol Biomarkers Prev. 2014 Aug;23(8):1689-95. doi: 10.1158/1055-9965.EPI-13-1364. Epub 2014 Jun 2.
8
Breast cancer risk prediction accuracy in Jewish Israeli high-risk women using the BOADICEA and IBIS risk models.
Genet Res (Camb). 2013 Dec;95(6):174-7. doi: 10.1017/S0016672313000232. Epub 2014 Feb 10.
9
Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK.
Br J Cancer. 2014 Feb 4;110(3):827-8. doi: 10.1038/bjc.2013.747. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验