Suppr超能文献

利用 SNP 基因型提高简单乳腺癌风险预测模型的判别能力。

Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model.

机构信息

Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Level 3/207 Bouverie Street, Carlton, VIC 3053, Australia.

出版信息

Breast Cancer Res Treat. 2013 Jun;139(3):887-96. doi: 10.1007/s10549-013-2610-2. Epub 2013 Jun 18.

Abstract

It has been shown that, for women aged 50 years or older, the discriminatory accuracy of the Breast Cancer Risk Prediction Tool (BCRAT) can be modestly improved by the inclusion of information on common single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risk. We aimed to determine whether a similar improvement is seen for earlier onset disease. We used the Australian Breast Cancer Family Registry to study a population-based sample of 962 cases aged 35-59 years, and 463 controls frequency matched for age and for whom genotyping data was available. Overall, the inclusion of data on seven SNPs improved the area under the receiver operating characteristic curve (AUC) from 0.58 (95 % confidence interval [CI] 0.55-0.61) for BCRAT alone to 0.61 (95 % CI 0.58-0.64) for BCRAT and SNP data combined (p < 0.001). For women aged 35-39 years at interview, the corresponding improvement in AUC was from 0.61 (95 % CI 0.56-0.66) to 0.65 (95 % CI 0.60-0.70; p = 0.03), while for women aged 40-49 years at diagnosis, the AUC improved from 0.61 (95 % CI 0.55-0.66) to 0.63 (95 % CI 0.57-0.69; p = 0.04). Using previously used classifications of low, intermediate and high risk, 2.1 % of cases and none of the controls aged 35-39 years, and 10.9 % of cases and 4.0 % of controls aged 40-49 years were classified into a higher risk group. Including information on seven SNPs associated with breast cancer risk, improves the discriminatory accuracy of BCRAT for women aged 35-39 years and 40-49 years. Given, the low absolute risk for women in these age groups, only a small proportion are reclassified into a higher category for predicted 5-year risk of breast cancer.

摘要

已经表明,对于 50 岁及以上的女性,通过纳入与乳腺癌风险增加相关的常见单核苷酸多态性 (SNP) 信息,可以适度提高乳腺癌风险预测工具 (BCRAT) 的判别准确性。我们旨在确定这种改进是否也适用于发病较早的疾病。我们使用澳大利亚乳腺癌家族登记处,对基于人群的 962 例 35-59 岁发病的病例和 463 例年龄匹配的对照进行了研究,这些对照可获得基因分型数据。总体而言,纳入 7 个 SNP 的数据将 BCRAT 单独的接收者操作特性曲线下面积 (AUC) 从 0.58(95%置信区间 [CI] 0.55-0.61)提高到 BCRAT 和 SNP 数据联合的 0.61(95%CI 0.58-0.64)(p<0.001)。对于访谈时年龄为 35-39 岁的女性,AUC 的相应提高为 0.61(95%CI 0.56-0.66)至 0.65(95%CI 0.60-0.70;p=0.03),而对于诊断时年龄为 40-49 岁的女性,AUC 从 0.61(95%CI 0.55-0.66)提高到 0.63(95%CI 0.57-0.69;p=0.04)。使用先前使用的低、中、高危分类方法,2.1%的病例和 35-39 岁的对照组中没有一个,10.9%的病例和 40-49 岁的对照组中 4.0%被归入高危组。纳入与乳腺癌风险相关的七个 SNP 信息可以提高 BCRAT 对 35-39 岁和 40-49 岁女性的判别准确性。鉴于这些年龄段女性的绝对风险较低,只有一小部分女性的预测 5 年乳腺癌风险被重新分类为更高的类别。

相似文献

1
Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model.
Breast Cancer Res Treat. 2013 Jun;139(3):887-96. doi: 10.1007/s10549-013-2610-2. Epub 2013 Jun 18.
2
Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk.
J Natl Cancer Inst. 2008 Jul 16;100(14):1037-41. doi: 10.1093/jnci/djn180. Epub 2008 Jul 8.
3
Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry.
Cancer Epidemiol Biomarkers Prev. 2016 Feb;25(2):359-65. doi: 10.1158/1055-9965.EPI-15-0838. Epub 2015 Dec 16.
4
Incremental impact of breast cancer SNP panel on risk classification in a screening population of white and African American women.
Breast Cancer Res Treat. 2013 Apr;138(3):889-98. doi: 10.1007/s10549-013-2471-8. Epub 2013 Mar 10.
5
Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model.
J Natl Cancer Inst. 2009 Jul 1;101(13):959-63. doi: 10.1093/jnci/djp130. Epub 2009 Jun 17.
6
Validation of a genetic risk score for Arkansas women of color.
PLoS One. 2018 Oct 3;13(10):e0204834. doi: 10.1371/journal.pone.0204834. eCollection 2018.
7
Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information.
J Natl Cancer Inst. 2010 Nov 3;102(21):1618-27. doi: 10.1093/jnci/djq388. Epub 2010 Oct 18.
8
SNPs and breast cancer risk prediction for African American and Hispanic women.
Breast Cancer Res Treat. 2015 Dec;154(3):583-9. doi: 10.1007/s10549-015-3641-7. Epub 2015 Nov 20.
10
Performance of Single-Nucleotide Polymorphisms in Breast Cancer Risk Prediction Models: A Systematic Review and Meta-analysis.
Cancer Epidemiol Biomarkers Prev. 2019 Mar;28(3):506-521. doi: 10.1158/1055-9965.EPI-18-0810. Epub 2018 Dec 18.

引用本文的文献

1
Development and performance of female breast cancer incidence risk prediction models: a systematic review and meta-analysis.
Ann Med. 2025 Dec;57(1):2534522. doi: 10.1080/07853890.2025.2534522. Epub 2025 Jul 20.
2
The clinical signature of genetic variants and serum levels of macrophage migration inhibitory factor in Egyptian breast cancer patients.
Breast Cancer Res Treat. 2024 Nov;208(1):57-66. doi: 10.1007/s10549-024-07393-9. Epub 2024 Jun 25.
4
Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention.
Med Rev (2021). 2022 Feb 14;1(2):129-149. doi: 10.1515/mr-2021-0025. eCollection 2021 Dec.
5
Validation of a breast cancer risk prediction model based on the key risk factors: family history, mammographic density and polygenic risk.
Breast Cancer Res Treat. 2023 Apr;198(2):335-347. doi: 10.1007/s10549-022-06834-7. Epub 2023 Feb 7.
6
A model for predicting both breast cancer risk and non-breast cancer death among women > 55 years old.
Breast Cancer Res. 2023 Jan 24;25(1):8. doi: 10.1186/s13058-023-01605-8.
7
Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review.
Heliyon. 2020 Apr 22;6(4):e03794. doi: 10.1016/j.heliyon.2020.e03794. eCollection 2020 Apr.
8
9
Predicting breast cancer risk using personal health data and machine learning models.
PLoS One. 2019 Dec 27;14(12):e0226765. doi: 10.1371/journal.pone.0226765. eCollection 2019.
10
A way forward for cancer prevention therapy: personalized risk assessment.
Oncotarget. 2019 Dec 3;10(64):6898-6912. doi: 10.18632/oncotarget.27365.

本文引用的文献

1
Discriminatory accuracy and potential clinical utility of genomic profiling for breast cancer risk in BRCA-negative women.
Breast Cancer Res Treat. 2011 Jun;127(2):479-87. doi: 10.1007/s10549-010-1215-2. Epub 2010 Oct 19.
2
Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information.
J Natl Cancer Inst. 2010 Nov 3;102(21):1618-27. doi: 10.1093/jnci/djq388. Epub 2010 Oct 18.
3
Assessing women at high risk of breast cancer: a review of risk assessment models.
J Natl Cancer Inst. 2010 May 19;102(10):680-91. doi: 10.1093/jnci/djq088. Epub 2010 Apr 28.
4
Comparing breast cancer risk assessment models.
J Natl Cancer Inst. 2010 May 19;102(10):665-8. doi: 10.1093/jnci/djq141. Epub 2010 Apr 28.
5
Performance of common genetic variants in breast-cancer risk models.
N Engl J Med. 2010 Mar 18;362(11):986-93. doi: 10.1056/NEJMoa0907727.
6
Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model.
J Natl Cancer Inst. 2009 Jul 1;101(13):959-63. doi: 10.1093/jnci/djp130. Epub 2009 Jun 17.
7
Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk.
J Natl Cancer Inst. 2008 Jul 16;100(14):1037-41. doi: 10.1093/jnci/djn180. Epub 2008 Jul 8.
8
Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer.
Nat Genet. 2008 Jun;40(6):703-6. doi: 10.1038/ng.131. Epub 2008 Apr 27.
10
Genome-wide association study identifies novel breast cancer susceptibility loci.
Nature. 2007 Jun 28;447(7148):1087-93. doi: 10.1038/nature05887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验