Suppr超能文献

激酶抑制剂选择性的计算建模

Computational Modeling of Kinase Inhibitor Selectivity.

作者信息

Subramanian Govindan, Sud Manish

机构信息

Structure, Design and Informatics, sanofi-aventis U.S., 1041 Route 202-206, P.O. Box 6800, Bridgewater, New Jersey 08807.

MayaChemTools, 4411 Cather Avenue, San Diego, California 92122.

出版信息

ACS Med Chem Lett. 2010 Jul 28;1(8):395-9. doi: 10.1021/ml1001097. eCollection 2010 Nov 11.

Abstract

An exhaustive computational exercise on a comprehensive set of 15 therapeutic kinase inhibitors was undertaken to identify as to which compounds hit which kinase off-targets in the human kinome. Although the kinase selectivity propensity of each inhibitor against ∼480 kinase targets is predicted, we compared our predictions to ∼280 kinase targets for which consistent experimental data are available and demonstrate an overall average prediction accuracy and specificity of ∼90%. A comparison of the predictions was extended to an additional ∼60 kinases for sorafenib and sunitinib as new experimental data were reported recently with similar prediction accuracy. The successful predictive capabilities allowed us to propose predictions on the remaining kinome targets in an effort to repurpose known kinase inhibitors to these new kinase targets that could hold therapeutic potential.

摘要

我们针对一组全面的15种治疗性激酶抑制剂进行了详尽的计算分析,以确定哪些化合物作用于人类激酶组中的哪些激酶脱靶位点。尽管预测了每种抑制剂对约480个激酶靶点的激酶选择性倾向,但我们将预测结果与约280个有一致实验数据的激酶靶点进行了比较,结果显示总体平均预测准确率和特异性约为90%。随着最近有新的实验数据报道,我们将索拉非尼和舒尼替尼的预测比较扩展到另外约60种激酶,预测准确率相似。成功的预测能力使我们能够对其余的激酶组靶点进行预测,从而尝试将已知的激酶抑制剂重新用于这些可能具有治疗潜力的新激酶靶点。

相似文献

1
Computational Modeling of Kinase Inhibitor Selectivity.
ACS Med Chem Lett. 2010 Jul 28;1(8):395-9. doi: 10.1021/ml1001097. eCollection 2010 Nov 11.
2
Computational analysis of kinase inhibitor selectivity using structural knowledge.
Bioinformatics. 2019 Jan 15;35(2):235-242. doi: 10.1093/bioinformatics/bty582.
3
Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.
J Chem Inf Model. 2012 Jan 23;52(1):156-70. doi: 10.1021/ci200314j. Epub 2012 Jan 6.
5
Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.
ChemMedChem. 2016 Jun 20;11(12):1352-61. doi: 10.1002/cmdc.201500228. Epub 2015 Jul 17.
6
Rapid computational identification of the targets of protein kinase inhibitors.
J Med Chem. 2005 Jun 16;48(12):4138-52. doi: 10.1021/jm049461b.
8
Structure-guided selection of specificity determining positions in the human Kinome.
BMC Genomics. 2016 Aug 18;17 Suppl 4(Suppl 4):431. doi: 10.1186/s12864-016-2790-3.
10
A quantitative analysis of kinase inhibitor selectivity.
Nat Biotechnol. 2008 Jan;26(1):127-32. doi: 10.1038/nbt1358.

引用本文的文献

1
Computational analysis of kinase inhibitor selectivity using structural knowledge.
Bioinformatics. 2019 Jan 15;35(2):235-242. doi: 10.1093/bioinformatics/bty582.
2
Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles.
Molecules. 2017 Sep 19;22(9):1576. doi: 10.3390/molecules22091576.
3
De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.
ACS Chem Biol. 2013 May 17;8(5):1044-52. doi: 10.1021/cb300729y. Epub 2013 Mar 27.
5
Extraction and validation of substructure profiles for enriching compound libraries.
J Comput Aided Mol Des. 2012 Oct;26(10):1127-41. doi: 10.1007/s10822-012-9604-8. Epub 2012 Sep 16.
6
Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.
Mol Pharm. 2010 Dec 6;7(6):2324-33. doi: 10.1021/mp1002976. Epub 2010 Nov 8.

本文引用的文献

1
Analysis of kinase inhibitor selectivity using a thermodynamics-based partition index.
J Med Chem. 2010 Jun 10;53(11):4502-10. doi: 10.1021/jm100301x.
2
A chemical and phosphoproteomic characterization of dasatinib action in lung cancer.
Nat Chem Biol. 2010 Apr;6(4):291-9. doi: 10.1038/nchembio.332. Epub 2010 Feb 28.
3
Selectively nonselective kinase inhibition: striking the right balance.
J Med Chem. 2010 Feb 25;53(4):1413-37. doi: 10.1021/jm901132v.
4
The (un)targeted cancer kinome.
Nat Chem Biol. 2010 Mar;6(3):166-169. doi: 10.1038/nchembio.297.
5
Targeting the cancer kinome through polypharmacology.
Nat Rev Cancer. 2010 Feb;10(2):130-7. doi: 10.1038/nrc2787.
6
Through the "gatekeeper door": exploiting the active kinase conformation.
J Med Chem. 2010 Apr 8;53(7):2681-94. doi: 10.1021/jm901443h.
7
Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis.
Bioinformatics. 2010 Jan 15;26(2):198-204. doi: 10.1093/bioinformatics/btp650. Epub 2009 Nov 26.
8
Safety assessment considerations and strategies for targeted small molecule cancer therapeutics in drug discovery.
Toxicol Pathol. 2010 Jan;38(1):165-8. doi: 10.1177/0192623309354341. Epub 2009 Nov 11.
9
Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
J Med Chem. 2009 Oct 22;52(20):6456-66. doi: 10.1021/jm901147e.
10
Small kinase assay panels can provide a measure of selectivity.
Bioorg Med Chem Lett. 2009 Oct 15;19(20):5861-3. doi: 10.1016/j.bmcl.2009.08.083. Epub 2009 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验