Suppr超能文献

相似文献

1
Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.
Mol Pharm. 2010 Dec 6;7(6):2324-33. doi: 10.1021/mp1002976. Epub 2010 Nov 8.
3
Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
J Chem Inf Model. 2015 Mar 23;55(3):538-49. doi: 10.1021/ci500624s. Epub 2015 Jan 20.
4
Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors.
J Chem Inf Model. 2012 Apr 23;52(4):901-12. doi: 10.1021/ci200607f. Epub 2012 Mar 26.
5
The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform.
J Chem Inf Model. 2024 Oct 14;64(19):7273-7290. doi: 10.1021/acs.jcim.4c00595. Epub 2024 Sep 25.
6
Extending kinome coverage by analysis of kinase inhibitor broad profiling data.
Drug Discov Today. 2015 Jun;20(6):652-8. doi: 10.1016/j.drudis.2015.01.002. Epub 2015 Jan 14.
7
Novel kinase inhibitors by reshuffling ligand functionalities across the human kinome.
J Chem Inf Model. 2012 Dec 21;52(12):3107-15. doi: 10.1021/ci3003842. Epub 2012 Nov 20.
9
KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning.
Nucleic Acids Res. 2024 Jul 5;52(W1):W489-W497. doi: 10.1093/nar/gkae380.
10
Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis.
Bioinformatics. 2010 Jan 15;26(2):198-204. doi: 10.1093/bioinformatics/btp650. Epub 2009 Nov 26.

引用本文的文献

1
Artificial intelligence to guide precision anticancer therapy with multitargeted kinase inhibitors.
BMC Cancer. 2022 Nov 24;22(1):1211. doi: 10.1186/s12885-022-10293-0.
2
Local Alignment of Ligand Binding Sites in Proteins for Polypharmacology and Drug Repositioning.
Methods Mol Biol. 2017;1611:109-122. doi: 10.1007/978-1-4939-7015-5_9.
3
eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.
PLoS Comput Biol. 2014 Sep 18;10(9):e1003829. doi: 10.1371/journal.pcbi.1003829. eCollection 2014 Sep.
4
Computational methods for analysis and inference of kinase/inhibitor relationships.
Front Genet. 2014 Jun 30;5:196. doi: 10.3389/fgene.2014.00196. eCollection 2014.
5
Are predicted protein structures of any value for binding site prediction and virtual ligand screening?
Curr Opin Struct Biol. 2013 Apr;23(2):191-7. doi: 10.1016/j.sbi.2013.01.009. Epub 2013 Feb 14.
6
FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
J Chem Inf Model. 2013 Jan 28;53(1):230-40. doi: 10.1021/ci300510n. Epub 2012 Dec 28.
8
Structure-based systems biology for analyzing off-target binding.
Curr Opin Struct Biol. 2011 Apr;21(2):189-99. doi: 10.1016/j.sbi.2011.01.004. Epub 2011 Feb 1.

本文引用的文献

1
Computational Modeling of Kinase Inhibitor Selectivity.
ACS Med Chem Lett. 2010 Jul 28;1(8):395-9. doi: 10.1021/ml1001097. eCollection 2010 Nov 11.
2
Targeting kinases for the treatment of inflammatory diseases.
Expert Opin Drug Discov. 2010 Sep;5(9):867-81. doi: 10.1517/17460441.2010.504203. Epub 2010 Jul 15.
4
Protein kinase C - possible therapeutic target to treat cardiovascular diseases.
Cardiovasc Hematol Disord Drug Targets. 2010 Dec 1;10(4):292-308. doi: 10.2174/187152910793743869.
5
Selectively nonselective kinase inhibition: striking the right balance.
J Med Chem. 2010 Feb 25;53(4):1413-37. doi: 10.1021/jm901132v.
6
Q-Dock(LHM): Low-resolution refinement for ligand comparative modeling.
J Comput Chem. 2010 Apr 15;31(5):1093-105. doi: 10.1002/jcc.21395.
7
Evaluation of template-based models in CASP8 with standard measures.
Proteins. 2009;77 Suppl 9(0 9):18-28. doi: 10.1002/prot.22561.
9
FINDSITE: a threading-based approach to ligand homology modeling.
PLoS Comput Biol. 2009 Jun;5(6):e1000405. doi: 10.1371/journal.pcbi.1000405. Epub 2009 Jun 5.
10
Binding site similarity analysis for the functional classification of the protein kinase family.
J Chem Inf Model. 2009 Feb;49(2):318-29. doi: 10.1021/ci800289y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验