Suppr超能文献

一种哺乳动物电压敏感性磷酸酶功能结构域的表征

Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.

作者信息

Rosasco Mario G, Gordon Sharona E, Bajjalieh Sandra M

机构信息

Department of Pharmacology, University of Washington, Seattle, Washington; Department of Physiology and Biophysics, University of Washington, Seattle, Washington.

Department of Physiology and Biophysics, University of Washington, Seattle, Washington.

出版信息

Biophys J. 2015 Dec 15;109(12):2480-2491. doi: 10.1016/j.bpj.2015.11.004.

Abstract

Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology.

摘要

电压敏感磷酸酶(VSPs)是一类能将膜电位变化直接与肌醇脂质磷酸酶活性相偶联的蛋白质。VSPs因此将对细胞功能至关重要的两条信号通路联系起来。尽管许多非哺乳动物的VSPs已在生物物理层面得到表征,但哺乳动物的VSPs在生理和生物物理层面上的了解仍较少。在本研究中,我们旨在通过确定来自小鼠的VSP(Mm-VSP)是否在大脑中表达以及是否包含功能性电压感应结构域(VSD)和磷酸酶结构域来填补这一知识空白。我们报告称Mm-VSP在神经元中表达且受发育调控。为了探究Mm-VSP中VSD和磷酸酶结构域的功能是否得以保留,我们利用这些结构域的模块化特性,在异源表达系统中分别独立地将它们作为嵌合蛋白进行表达。我们发现,与病毒钾通道融合的Mm-VSP VSD能够驱动通道孔的电压依赖性门控。与非哺乳动物VSP的VSD融合的Mm-VSP磷酸酶结构域也具有功能:激活会导致PI(4,5)P2耗竭,这足以抑制PI(4,5)P2调节的KCNQ2/3通道。在测试VSD和磷酸酶结构域的功能时,我们观察到基于Mm-VSP的嵌合体与非哺乳动物VSPs的活性之间存在细微差异。尽管VSP嵌合体的特性可能无法完全反映天然VSPs的特性,但我们在电压感应和磷酸酶活性方面观察到的差异为未来研究Mm-VSP和其他哺乳动物VSPs功能的实验提供了一个起点。总之,我们的数据表明Mm-VSP的VSD和脂质磷酸酶结构域均具有功能,这表明Mm-VSP可能在小鼠神经生理学中发挥重要作用。

相似文献

1
Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.
Biophys J. 2015 Dec 15;109(12):2480-2491. doi: 10.1016/j.bpj.2015.11.004.
2
Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2.
J Physiol. 2007 Sep 15;583(Pt 3):875-89. doi: 10.1113/jphysiol.2007.134775. Epub 2007 Jul 5.
3
A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7970-5. doi: 10.1073/pnas.0803936105. Epub 2008 Jun 4.
4
Engineering an enhanced voltage-sensing phosphatase.
J Gen Physiol. 2020 May 4;152(5). doi: 10.1085/jgp.201912491.
5
3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10089-94. doi: 10.1073/pnas.1203799109. Epub 2012 May 29.
6
Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering.
Physiol Rev. 2018 Oct 1;98(4):2097-2131. doi: 10.1152/physrev.00056.2017.
7
Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity.
J Physiol. 2011 Jun 1;589(Pt 11):2687-705. doi: 10.1113/jphysiol.2011.208165. Epub 2011 Apr 4.
10
Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3686-95. doi: 10.1073/pnas.1606472113. Epub 2016 May 24.

引用本文的文献

2
Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP.
Biophys J. 2023 Jun 6;122(11):2267-2284. doi: 10.1016/j.bpj.2023.01.022. Epub 2023 Jan 20.
3
TRP ion channels: Proteins with conformational flexibility.
Channels (Austin). 2019 Dec;13(1):207-226. doi: 10.1080/19336950.2019.1626793.
4
The voltage sensing phosphatase (VSP) localizes to the apical membrane of kidney tubule epithelial cells.
PLoS One. 2019 Apr 9;14(4):e0209056. doi: 10.1371/journal.pone.0209056. eCollection 2019.
5
Determining the molecular basis of voltage sensitivity in membrane proteins.
J Gen Physiol. 2018 Oct 1;150(10):1444-1458. doi: 10.1085/jgp.201812086. Epub 2018 Aug 27.
6
Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.
J Gen Physiol. 2018 May 7;150(5):683-696. doi: 10.1085/jgp.201812064. Epub 2018 Apr 25.
7
Domain-to-domain coupling in voltage-sensing phosphatase.
Biophys Physicobiol. 2017 Jun 1;14:85-97. doi: 10.2142/biophysico.14.0_85. eCollection 2017.
8
Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3686-95. doi: 10.1073/pnas.1606472113. Epub 2016 May 24.

本文引用的文献

1
A palette of fluorescent proteins optimized for diverse cellular environments.
Nat Commun. 2015 Jul 9;6:7670. doi: 10.1038/ncomms8670.
2
Cancer as a channelopathy: ion channels and pumps in tumor development and progression.
Front Cell Neurosci. 2015 Mar 17;9:86. doi: 10.3389/fncel.2015.00086. eCollection 2015.
3
Functional diversity of voltage-sensing phosphatases in two urodele amphibians.
Physiol Rep. 2014 Jul 16;2(7):e12061. doi: 10.14814/phy2.12061.
4
Probing α-3(10) transitions in a voltage-sensing S4 helix.
Biophys J. 2014 Sep 2;107(5):1117-1128. doi: 10.1016/j.bpj.2014.07.042.
5
Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2281-90. doi: 10.1073/pnas.1407133111. Epub 2014 May 19.
6
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Nat Struct Mol Biol. 2014 Mar;21(3):244-52. doi: 10.1038/nsmb.2768. Epub 2014 Feb 2.
7
Channelopathy pathogenesis in autism spectrum disorders.
Front Genet. 2013 Nov 5;4:222. doi: 10.3389/fgene.2013.00222.
8
Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.
J Gen Physiol. 2013 Nov;142(5):543-55. doi: 10.1085/jgp.201310993. Epub 2013 Oct 14.
10
The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.
J Gen Physiol. 2013 Mar;141(3):389-95. doi: 10.1085/jgp.201210940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验