Suppr超能文献

工程化增强型电压感应磷酸酶。

Engineering an enhanced voltage-sensing phosphatase.

机构信息

Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.

出版信息

J Gen Physiol. 2020 May 4;152(5). doi: 10.1085/jgp.201912491.

Abstract

Voltage-sensing phosphatases (VSP) consist of a membrane-spanning voltage sensor domain and a cytoplasmic region that has enzymatic activity toward phosphoinositides (PIs). VSP enzyme activity is regulated by membrane potential, and its activation leads to rapid and reversible alteration of cellular PIP levels. These properties enable VSPs to be used as a tool for studying the effects of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) binding to ion channels and transporters. For example, by applying simple changes in the membrane potential, Danio rerio VSP (Dr-VSP) has been used effectively to manipulate PI(4,5)P2 in mammalian cells with few, if any, side effects. In the present study, we report an enhanced version of Dr-VSP as an improved molecular tool for depleting PI(4,5)P2 from cultured mammalian cells. We modified Dr-VSP in two ways. Its voltage-dependent phosphatase activity was enhanced by introducing an aromatic residue at the position of Leu-223 within a membrane-interacting region of the phosphatase domain called the hydrophobic spine. In addition, selective plasma membrane targeting of Dr-VSP was facilitated by fusion with the N-terminal region of Ciona intestinalis VSP. This modified Dr-VSP (CiDr-VSPmChe L223F, or what we call eVSP) induced more drastic voltage-evoked changes in PI(4,5)P2 levels, using the activities of Kir2.1, KCNQ2/3, and TRPC6 channels as functional readouts. eVSP is thus an improved molecular tool for evaluating the PI(4,5)P2 sensitivity of ion channels in living cells.

摘要

电压感应磷酸酶(VSP)由一个跨膜电压传感器结构域和一个具有针对磷酸肌醇(PI)的酶活性的细胞质区域组成。VSP 酶活性受膜电位调节,其激活导致细胞内 PIP 水平的快速和可逆改变。这些特性使 VSP 能够被用作研究磷脂酰肌醇-4,5-二磷酸(PI(4,5)P2)与离子通道和转运蛋白结合的工具。例如,通过对膜电位进行简单的改变,斑马鱼 VSP(Dr-VSP)已被有效地用于操纵哺乳动物细胞中的 PI(4,5)P2,几乎没有任何副作用。在本研究中,我们报告了一种改良的 Dr-VSP 作为一种从培养的哺乳动物细胞中去除 PI(4,5)P2 的改进分子工具。我们通过两种方式对 Dr-VSP 进行了修饰。通过在磷酸酶结构域的膜相互作用区域内的 Leu-223 位置引入芳香族残基,增强了其电压依赖性磷酸酶活性,该区域称为疏水区脊柱。此外,通过与海鞘 VSP 的 N 端区域融合,促进了 Dr-VSP 的选择性质膜靶向。这种改良的 Dr-VSP(CiDr-VSPmChe L223F,或我们称之为 eVSP)使用 Kir2.1、KCNQ2/3 和 TRPC6 通道的活性作为功能读数,诱导了更剧烈的电压诱导的 PI(4,5)P2 水平变化。因此,eVSP 是一种改进的分子工具,可用于评估活细胞中离子通道对 PI(4,5)P2 的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1881/7201886/b581724e7764/JGP_201912491_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验