Suppr超能文献

利手以及在小型触摸屏上进行的食指动作。

Handedness and index finger movements performed on a small touchscreen.

作者信息

Aoki Tomoko, Rivlis Gil, Schieber Marc H

机构信息

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan;

Department of Neurology, University of Rochester, Rochester, New York; Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York; and.

出版信息

J Neurophysiol. 2016 Feb 1;115(2):858-67. doi: 10.1152/jn.00256.2015. Epub 2015 Dec 16.

Abstract

Many studies of right/left differences in motor performance related to handedness have employed tasks that use arm movements or combined arm and hand movements rather than movements of the fingers per se, the well-known exception being rhythmic finger tapping. We therefore explored four simple tasks performed on a small touchscreen with relatively isolated movements of the index finger. Each task revealed a different right/left performance asymmetry. In a step-tracking Target Task, left-handed subjects showed greater accuracy with the index finger of the dominant left hand than with the nondominant right hand. In a Center-Out Task, right-handed subjects produced trajectories with the nondominant left hand that had greater curvature than those produced with the dominant right hand. In a continuous Circle Tracking Task, slips of the nondominant left index finger showed higher jerk than slips of the dominant right index finger. And in a continuous Complex Tracking Task, the nondominant left index finger showed shorter time lags in tracking the relatively unpredictable target than the dominant right index finger. Our findings are broadly consistent with previous studies indicating left hemisphere specialization for dynamic control and predictable situations vs. right hemisphere specialization for impedance control and unpredictable situations, the specialized contributions of the two hemispheres being combined to different degrees in the right vs. left hands of right-handed vs. left-handed individuals.

摘要

许多关于与利手相关的运动表现左右差异的研究都采用了使用手臂运动或手臂与手部联合运动的任务,而非手指本身的运动,著名的例外是有节奏的手指敲击。因此,我们在一个小触摸屏上探索了四项涉及食指相对独立运动的简单任务。每项任务都揭示了不同的左右表现不对称性。在步长跟踪目标任务中,左利手受试者用优势手左手食指的表现比非优势手右手更准确。在中心向外任务中,右利手受试者用非优势手左手产生的轨迹比用优势手右手产生的轨迹曲率更大。在连续圆圈跟踪任务中,非优势手左手食指的失误比优势手右手食指的失误表现出更高的加加速度。而在连续复杂跟踪任务中,非优势手左手食指在跟踪相对不可预测的目标时比优势手右手食指表现出更短的时间延迟。我们的发现与先前的研究大致一致,先前研究表明左半球专门负责动态控制和可预测的情况,而右半球专门负责阻抗控制和不可预测的情况,在右利手与左利手个体的右手与左手方面,两个半球的专门贡献以不同程度相结合。

相似文献

1
Handedness and index finger movements performed on a small touchscreen.利手以及在小型触摸屏上进行的食指动作。
J Neurophysiol. 2016 Feb 1;115(2):858-67. doi: 10.1152/jn.00256.2015. Epub 2015 Dec 16.
2
Brain correlates of right-handedness.右利手的大脑关联因素。
Acta Neurobiol Exp (Wars). 2007;67(1):43-51. doi: 10.55782/ane-2007-1631.
6
Hand dominance and multi-finger synergies.手的优势与多指协同作用。
Neurosci Lett. 2006 Dec 6;409(3):200-4. doi: 10.1016/j.neulet.2006.09.048. Epub 2006 Oct 2.

引用本文的文献

2
How virtual and mechanical coupling impact bimanual tracking.虚拟和机械耦合如何影响双手跟踪。
J Neurophysiol. 2023 Jan 1;129(1):102-114. doi: 10.1152/jn.00057.2022. Epub 2022 Dec 7.

本文引用的文献

1
Convergent models of handedness and brain lateralization.惯用手和大脑偏侧性的汇聚模型。
Front Psychol. 2014 Oct 8;5:1092. doi: 10.3389/fpsyg.2014.01092. eCollection 2014.
2
Handedness can be explained by a serial hybrid control scheme.利手可以用一种串行混合控制方案来解释。
Neuroscience. 2014 Oct 10;278:385-96. doi: 10.1016/j.neuroscience.2014.08.026. Epub 2014 Aug 28.
4
Sensorimotor performance asymmetries predict hand selection.感觉运动性能的不对称性预测手的选择。
Neuroscience. 2013 Jan 3;228:349-60. doi: 10.1016/j.neuroscience.2012.10.046. Epub 2012 Oct 27.
6
Origins of the left & right brain.左右脑的起源。
Sci Am. 2009 Jul;301(1):60-7. doi: 10.1038/scientificamerican0709-60.
10
Hand dominance and multi-finger synergies.手的优势与多指协同作用。
Neurosci Lett. 2006 Dec 6;409(3):200-4. doi: 10.1016/j.neulet.2006.09.048. Epub 2006 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验