Borodinsky Laura N, Belgacem Yesser H
Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
J Chem Neuroanat. 2016 Apr;73:3-8. doi: 10.1016/j.jchemneu.2015.12.001. Epub 2015 Dec 12.
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
形态发生蛋白通过促进细胞增殖来构建胚胎神经系统,这些细胞将构成所有神经结构,并通过指定神经祖细胞来为分化中的神经元赋予不同的特性,从而使神经元具有不同的身份。采用特定的神经递质表型对于神经元分化的进程至关重要,它使神经元能够相互连接并与靶组织建立联系。初步的神经递质指定源自形态发生蛋白驱动的神经祖细胞指定,这是通过转录因子根据形态发生蛋白浓度梯度进行组合表达实现的,这种梯度会逐渐限制新生神经元所采用的身份。然而,神经递质表型并非一成不变,相反,靶组织释放的营养因子和环境刺激会改变神经递质合成酶和特定囊泡转运体的表达,从而改变神经元的神经递质身份。在这里,我们综述了一些研究,这些研究确定了儿茶酚胺能、γ-氨基丁酸能、谷氨酸能、胆碱能和5-羟色胺能早期指定的机制,以及这些神经递质表型在发育过程中和成年神经系统中的可塑性。发育中的神经元自发电活动的出现,在神经递质表型可塑性过程中募集了形态发生蛋白,这最终使神经系统和整个生物体具备在不断变化的环境中实现最佳性能的适应性。