Biology Department, and Allen Discovery Center at Tufts University, Medford, MA 02155, United States.
Biology Department, and Allen Discovery Center at Tufts University, Medford, MA 02155, United States.
Curr Opin Biotechnol. 2018 Aug;52:134-144. doi: 10.1016/j.copbio.2018.03.008. Epub 2018 Apr 21.
Breakthroughs in biomedicine and synthetic bioengineering require predictive, rational control over anatomical structure and function. Recent successes in manipulating cellular and molecular hardware have not been matched by progress in understanding the patterning software implemented during embryogenesis and regeneration. A fundamental capability gap is driving desired changes in growth and form to address birth defects and traumatic injury. Here we review new tools, results, and conceptual advances in an exciting emerging field: endogenous non-neural bioelectric signaling, which enables cellular collectives to make global decisions and implement large-scale pattern homeostasis. Spatially distributed electric circuits regulate gene expression, organ morphogenesis, and body-wide axial patterning. Developmental bioelectricity facilitates the interface to organ-level modular control points that direct patterning in vivo. Cracking the bioelectric code will enable transformative progress in bioengineering and regenerative medicine.
在生物医学和合成生物工程领域取得突破,需要对解剖结构和功能进行预测性、理性控制。尽管在操纵细胞和分子硬件方面取得了成功,但在理解胚胎发生和再生过程中实施的模式形成软件方面却没有取得相应的进展。一个基本的能力差距正在推动着生长和形态的变化,以解决出生缺陷和创伤性损伤的问题。在这里,我们回顾了一个令人兴奋的新兴领域中的新工具、新结果和新概念进展:内源性非神经生物电信号,它使细胞集体能够做出全局决策并实现大规模模式稳态。空间分布的电路调节基因表达、器官形态发生和全身轴向模式形成。发育生物电促进了与器官水平模块化控制点的接口,这些控制点在体内指导模式形成。破解生物电密码将推动生物工程和再生医学的变革性进展。