Suppr超能文献

艰难梭菌的SpoIIQ-SpoIIIAH复合物控制前芽孢吞噬以及基因表达和孢子形态发生的后期阶段。

The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis.

作者信息

Serrano Mónica, Crawshaw Adam D, Dembek Marcin, Monteiro João M, Pereira Fátima C, Pinho Mariana Gomes, Fairweather Neil F, Salgado Paula S, Henriques Adriano O

机构信息

Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal.

Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Mol Microbiol. 2016 Apr;100(1):204-28. doi: 10.1111/mmi.13311. Epub 2016 Feb 12.

Abstract

Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc-binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQ(H120S) interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQ(H120S) , binds Zn(2+) , and metal absence alters the SpoIIQ-SpoIIIAH complex in vitro. Possibly, SpoIIQ(H120S) supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post-engulfment, forespore and mother cell-specific gene expression, suggesting a channel-like function. Both engulfment and a channel-like function may be ancestral functions of SpoIIQ-SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms.

摘要

母细胞对前芽孢的吞噬是芽孢形成的一个普遍特征。在枯草芽孢杆菌中,前芽孢蛋白SpoIIQ和母细胞蛋白SpoIIIAH形成一个对芽孢形成至关重要的通道,发育中的芽孢通过该通道获得营养。这两种蛋白还形成了一个吞噬的备用系统。与枯草芽孢杆菌不同,艰难梭菌的SpoIIQ具有完整的LytM锌结合基序。我们发现,艰难梭菌的spoIIQ或spoIIIAH缺失突变体导致异常吞噬,并且通过单个氨基酸取代(H120S)破坏SpoIIQ的LytM结构域对吞噬的损害有所不同。在整个吞噬过程中,SpoIIQ和SpoIIQ(H120S)都与SpoIIIAH相互作用。SpoIIQ能结合Zn(2+),而SpoIIQ(H120S)不能,并且金属的缺失在体外改变了SpoIIQ-SpoIIIAH复合物。可能,SpoIIQ(H120S)在一些细胞中支持正常吞噬,但不支持吞噬完成后复合物所需的第二个功能。我们发现,完成吞噬作用的spoIIQ或spoIIIAH突变体细胞在吞噬后、前芽孢和母细胞特异性基因表达方面存在缺陷,这表明存在类似通道的功能。吞噬作用和类似通道的功能可能都是SpoIIQ-SpoIIIAH的原始功能,而在枯草芽孢杆菌及相关生物体中,由于冗余机制的出现,对吞噬作用的需求得到了缓解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f0/4982068/b0cc5fabbe08/MMI-100-204-g001.jpg

相似文献

2
Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins.
PLoS Genet. 2015 Oct 14;11(10):e1005562. doi: 10.1371/journal.pgen.1005562. eCollection 2015 Oct.
3
Structure of components of an intercellular channel complex in sporulating Bacillus subtilis.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5441-5. doi: 10.1073/pnas.1120087109. Epub 2012 Mar 19.
6
The SpoIIQ landmark protein has different requirements for septal localization and immobilization.
Mol Microbiol. 2013 Sep;89(6):1053-68. doi: 10.1111/mmi.12333. Epub 2013 Aug 14.
8
Structure of the basal components of a bacterial transporter.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5446-51. doi: 10.1073/pnas.1120113109. Epub 2012 Mar 19.
9
Impact of membrane fusion and proteolysis on SpoIIQ dynamics and interaction with SpoIIIAH.
J Biol Chem. 2007 Jan 26;282(4):2576-86. doi: 10.1074/jbc.M606056200. Epub 2006 Nov 22.

引用本文的文献

1
Spores of Clostridioides difficile are toxin delivery vehicles.
Commun Biol. 2024 Jul 10;7(1):839. doi: 10.1038/s42003-024-06521-x.
2
Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile.
Mol Microbiol. 2024 Aug;122(2):213-229. doi: 10.1111/mmi.15291. Epub 2024 Jun 22.
3
Clostridioides difficile Sporulation.
Adv Exp Med Biol. 2024;1435:273-314. doi: 10.1007/978-3-031-42108-2_13.
6
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers.
J Bacteriol. 2022 Sep 20;204(9):e0018722. doi: 10.1128/jb.00187-22. Epub 2022 Aug 1.
7
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the .
J Bacteriol. 2022 Jun 21;204(6):e0007922. doi: 10.1128/jb.00079-22. Epub 2022 May 31.
9
Practical observations on the use of fluorescent reporter systems in Clostridioides difficile.
Antonie Van Leeuwenhoek. 2022 Feb;115(2):297-323. doi: 10.1007/s10482-021-01691-8. Epub 2022 Jan 18.
10
Sporulation in solventogenic and acetogenic clostridia.
Appl Microbiol Biotechnol. 2021 May;105(9):3533-3557. doi: 10.1007/s00253-021-11289-9. Epub 2021 Apr 26.

本文引用的文献

1
The cytosol must flow: intercellular transport through plasmodesmata.
Curr Opin Cell Biol. 2015 Aug;35:13-20. doi: 10.1016/j.ceb.2015.03.003. Epub 2015 Apr 6.
2
High-throughput analysis of gene essentiality and sporulation in Clostridium difficile.
mBio. 2015 Feb 24;6(2):e02383. doi: 10.1128/mBio.02383-14.
3
Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
Curr Opin Microbiol. 2015 Apr;24:88-95. doi: 10.1016/j.mib.2015.01.006. Epub 2015 Feb 1.
4
The Clostridium sporulation programs: diversity and preservation of endospore differentiation.
Microbiol Mol Biol Rev. 2015 Mar;79(1):19-37. doi: 10.1128/MMBR.00025-14.
5
SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation.
Mol Microbiol. 2015 Jan;95(2):189-208. doi: 10.1111/mmi.12856. Epub 2014 Dec 19.
6
Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall.
PLoS Comput Biol. 2014 Oct 30;10(10):e1003912. doi: 10.1371/journal.pcbi.1003912. eCollection 2014 Oct.
7
A mother cell-to-forespore channel: current understanding and future challenges.
FEMS Microbiol Lett. 2014 Sep;358(2):129-36. doi: 10.1111/1574-6968.12554. Epub 2014 Aug 28.
8
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.
Trends Microbiol. 2014 Jul;22(7):406-16. doi: 10.1016/j.tim.2014.04.003. Epub 2014 May 7.
9
The spore differentiation pathway in the enteric pathogen Clostridium difficile.
PLoS Genet. 2013;9(10):e1003782. doi: 10.1371/journal.pgen.1003782. Epub 2013 Oct 3.
10
Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile.
PLoS Genet. 2013;9(10):e1003756. doi: 10.1371/journal.pgen.1003756. Epub 2013 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验