Suppr超能文献

利用回顾性抽样来估计大型纵向社交网络中的关系状态模型。

Using Retrospective Sampling to Estimate Models of Relationship Status in Large Longitudinal Social Networks.

作者信息

O'Malley A James, Paul Sudeshna

机构信息

The Dartmouth Institute for Healh Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA.

Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA.

出版信息

Comput Stat Data Anal. 2015 Feb 1;82:35-46. doi: 10.1016/j.csda.2014.08.001.

Abstract

Estimation of longitudinal models of relationship status between all pairs of individuals (dyads) in social networks is challenging due to the complex inter-dependencies among observations and lengthy computation times. To reduce the computational burden of model estimation, a method is developed that subsamples the "always-null" dyads in which no relationships develop throughout the period of observation. The informative sampling process is accounted for by weighting the likelihood contributions of the observations by the inverses of the sampling probabilities. This weighted-likelihood estimation method is implemented using Bayesian computation and evaluated in terms of its bias, efficiency, and speed of computation under various settings. Comparisons are also made to a full information likelihood-based procedure that is only feasible to compute when limited follow-up observations are available. Calculations are performed on two real social networks of very different sizes. The easily computed weighted-likelihood procedure closely approximates the corresponding estimates for the full network, even when using low sub-sampling fractions. The fast computation times make the weighted-likelihood approach practical and able to be applied to networks of any size.

摘要

估计社交网络中所有个体对(二元组)之间关系状态的纵向模型具有挑战性,这是由于观测值之间存在复杂的相互依赖关系以及计算时间较长。为了减轻模型估计的计算负担,开发了一种方法,该方法对“始终为空”的二元组进行子采样,即在整个观测期内没有关系发展的二元组。通过用采样概率的倒数对观测值的似然贡献进行加权来考虑信息采样过程。这种加权似然估计方法通过贝叶斯计算实现,并在各种设置下根据其偏差、效率和计算速度进行评估。还与基于全信息似然的程序进行了比较,该程序只有在有限的随访观测可用时才可行计算。在两个规模差异很大的真实社交网络上进行了计算。即使使用低子采样比例,易于计算的加权似然程序也能非常接近全网络的相应估计值。快速的计算时间使得加权似然方法切实可行,并且能够应用于任何规模的网络。

相似文献

1
Using Retrospective Sampling to Estimate Models of Relationship Status in Large Longitudinal Social Networks.
Comput Stat Data Anal. 2015 Feb 1;82:35-46. doi: 10.1016/j.csda.2014.08.001.
2
Hierarchical longitudinal models of relationships in social networks.
J R Stat Soc Ser C Appl Stat. 2013 Oct;62(5):705-722. doi: 10.1111/rssc.12013.
3
Occupancy modeling species-environment relationships with non-ignorable survey designs.
Ecol Appl. 2018 Sep;28(6):1616-1625. doi: 10.1002/eap.1754. Epub 2018 Jul 19.
4
The effect of network size and sampling completeness in depauperate networks.
J Anim Ecol. 2019 Feb;88(2):211-222. doi: 10.1111/1365-2656.12912. Epub 2018 Nov 2.
5
Bayesian inference based on stationary Fokker-Planck sampling.
Neural Comput. 2010 Jun;22(6):1573-96. doi: 10.1162/neco.2010.01-09-943.
6
Estimating uncertainty and reliability of social network data using Bayesian inference.
R Soc Open Sci. 2015 Sep 16;2(9):150367. doi: 10.1098/rsos.150367. eCollection 2015 Sep.
8
Weighted estimation for multivariate shared frailty models for complex surveys.
Lifetime Data Anal. 2019 Jul;25(3):469-479. doi: 10.1007/s10985-019-09469-x. Epub 2019 Apr 10.
9
Modeling and analyzing respondent-driven sampling as a counting process.
Biometrics. 2017 Dec;73(4):1189-1198. doi: 10.1111/biom.12678. Epub 2017 Mar 3.
10
Variable Selection for High-dimensional Nodal Attributes in Social Networks with Degree Heterogeneity.
J Am Stat Assoc. 2024;119(546):1322-1335. doi: 10.1080/01621459.2023.2187815. Epub 2023 Apr 13.

引用本文的文献

1
Methodology for supervised optimization of the construction of physician shared-patient networks.
Stat Methods Med Res. 2025 May;34(5):938-955. doi: 10.1177/09622802241313281. Epub 2025 Mar 31.
2
Informal Caregiving Networks of Older Adults With Dementia Superimposed on Multimorbidity: A Social Network Analysis Study.
Innov Aging. 2023 Apr 17;7(4):igad033. doi: 10.1093/geroni/igad033. eCollection 2023.

本文引用的文献

1
Fast Inference for the Latent Space Network Model Using a Case-Control Approximate Likelihood.
J Comput Graph Stat. 2012;21(4):901-919. doi: 10.1080/10618600.2012.679240. Epub 2012 Apr 4.
2
Hierarchical longitudinal models of relationships in social networks.
J R Stat Soc Ser C Appl Stat. 2013 Oct;62(5):705-722. doi: 10.1111/rssc.12013.
3
The Analysis of Social Networks.
Health Serv Outcomes Res Methodol. 2008 Dec 1;8(4):222-269. doi: 10.1007/s10742-008-0041-z.
4
The collective dynamics of smoking in a large social network.
N Engl J Med. 2008 May 22;358(21):2249-58. doi: 10.1056/NEJMsa0706154.
5
Advances in Exponential Random Graph (p*) Models Applied to a Large Social Network.
Soc Networks. 2007 May;29(2):231-248. doi: 10.1016/j.socnet.2006.08.001.
6
The spread of obesity in a large social network over 32 years.
N Engl J Med. 2007 Jul 26;357(4):370-9. doi: 10.1056/NEJMsa066082. Epub 2007 Jul 25.
8
Finding and evaluating community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113. doi: 10.1103/PhysRevE.69.026113. Epub 2004 Feb 26.
9
Conditional logistic analysis of case-control studies with complex sampling.
Biostatistics. 2001 Mar;2(1):63-84. doi: 10.1093/biostatistics/2.1.63.
10
Girls, pecking order and smoking.
Soc Sci Med. 1997 Jun;44(12):1861-9. doi: 10.1016/s0277-9536(96)00295-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验