Suppr超能文献

平面异质结钙钛矿太阳能电池界面工程的最新进展

Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

作者信息

Yin Wei, Pan Lijia, Yang Tingbin, Liang Yongye

机构信息

School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China.

出版信息

Molecules. 2016 Jun 25;21(7):837. doi: 10.3390/molecules21070837.

Abstract

Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

摘要

有机-无机杂化钙钛矿太阳能电池因其前驱体成本低、功率转换效率(PCE)高以及易于加工等优点,被认为是最具前景的下一代太阳能电池之一。在过去几年中,钙钛矿太阳能电池的功率转换效率已从几个百分点攀升至超过20%。最近的进展表明,钙钛矿具有双极性半导体特性,这使得平面异质结(PHJ)钙钛矿太阳能电池的构建成为可能。PHJ钙钛矿太阳能电池可以避免使用高温烧结的介孔金属氧化物,从而实现简单加工以及柔性和串联钙钛矿太阳能电池的制造。在平面异质结材料中,空穴/电子传输层被引入到钙钛矿薄膜与阳极/阴极之间。空穴和电子传输层有望增强激子分离、电荷传输和收集。此外,钙钛矿薄膜的支撑层不仅在能级对准中起重要作用,还会影响钙钛矿薄膜的形貌,而这对器件性能有很大影响。此外,界面层也会影响器件稳定性。在这篇综述中,将回顾PHJ钙钛矿太阳能电池界面工程的最新进展,特别是涉及分子界面材料的进展。将系统地综述用于优化钙钛矿薄膜的支撑界面层。最后,将讨论钙钛矿太阳能电池研究中仍然存在的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c42/6273149/be1150dcbe76/molecules-21-00837-g001.jpg

相似文献

1
Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.
Molecules. 2016 Jun 25;21(7):837. doi: 10.3390/molecules21070837.
2
Rational Strategies for Efficient Perovskite Solar Cells.
Acc Chem Res. 2016 Mar 15;49(3):562-72. doi: 10.1021/acs.accounts.5b00444. Epub 2016 Mar 7.
3
Impact of Interfacial Layers in Perovskite Solar Cells.
ChemSusChem. 2017 Oct 9;10(19):3687-3704. doi: 10.1002/cssc.201701095. Epub 2017 Sep 25.
4
Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells.
ChemSusChem. 2016 Sep 22;9(18):2559-2566. doi: 10.1002/cssc.201601004. Epub 2016 Aug 24.
5
Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.
ChemSusChem. 2016 Jan 8;9(1):10-27. doi: 10.1002/cssc.201501228. Epub 2015 Dec 21.
6
Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.
ChemSusChem. 2016 Feb 8;9(3):302-13. doi: 10.1002/cssc.201501273. Epub 2016 Jan 8.
7
Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.
Acc Chem Res. 2016 Jan 19;49(1):155-65. doi: 10.1021/acs.accounts.5b00404. Epub 2015 Dec 22.
8
Hole-Transporting Materials Based on Twisted Bimesitylenes for Stable Perovskite Solar Cells with High Efficiency.
ChemSusChem. 2016 Feb 8;9(3):274-9. doi: 10.1002/cssc.201501392. Epub 2016 Jan 15.
9
Solvent-Assisted Preparation of High-Performance Mesoporous CH₃NH₃Pbl₃ Perovskite Solar Cells.
J Nanosci Nanotechnol. 2016 Jan;16(1):844-50. doi: 10.1166/jnn.2016.11638.

本文引用的文献

1
Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells.
Chem Commun (Camb). 2016 Jun 21;52(52):8099-102. doi: 10.1039/c6cc03740b.
2
High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer.
ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14503-12. doi: 10.1021/acsami.6b02064. Epub 2016 Jun 3.
3
Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.
ACS Nano. 2016 Jun 28;10(6):6029-36. doi: 10.1021/acsnano.6b01575. Epub 2016 May 18.
5
Novel Combination of Efficient Perovskite Solar Cells with Low Temperature Processed Compact TiO2 Layer via Anodic Oxidation.
ACS Appl Mater Interfaces. 2016 May 25;8(20):12836-42. doi: 10.1021/acsami.6b02706. Epub 2016 May 12.
6
Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells.
Adv Mater. 2016 Jul;28(25):5112-20. doi: 10.1002/adma.201504168. Epub 2016 May 4.
7
Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer.
ACS Appl Mater Interfaces. 2016 May 18;8(19):12377-83. doi: 10.1021/acsami.6b00084. Epub 2016 May 5.
8
Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2016 May 4;8(17):11076-83. doi: 10.1021/acsami.5b12123. Epub 2016 Apr 20.
9
Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers.
ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8460-6. doi: 10.1021/acsami.5b12849. Epub 2016 Mar 25.
10
Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2016 Mar;8(12):7800-5. doi: 10.1021/acsami.5b12776. Epub 2016 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验