Suppr超能文献

跨物种、组织和研究的RNA测序表达数据的荟萃分析。

Meta-analysis of RNA-seq expression data across species, tissues and studies.

作者信息

Sudmant Peter H, Alexis Maria S, Burge Christopher B

机构信息

Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.

Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.

出版信息

Genome Biol. 2015 Dec 22;16:287. doi: 10.1186/s13059-015-0853-4.

Abstract

BACKGROUND

Differences in gene expression drive phenotypic differences between species, yet major organs and tissues generally have conserved gene expression programs. Several comparative transcriptomic studies have observed greater similarity in gene expression between homologous tissues from different vertebrate species than between diverse tissues of the same species. However, a recent study by Lin and colleagues reached the opposite conclusion. These studies differed in the species and tissues analyzed, and in technical details of library preparation, sequencing, read mapping, normalization, gene sets, and clustering methods.

RESULTS

To better understand gene expression evolution we reanalyzed data from four studies, including that of Lin, encompassing 6-13 tissues each from 11 vertebrate species using standardized mapping, normalization, and clustering methods. An analysis of independent data showed that the set of tissues chosen by Lin et al. were more similar to each other than those analyzed by previous studies. Comparing expression in five common tissues from the four studies, we observed that samples clustered exclusively by tissue rather than by species or study, supporting conservation of organ physiology in mammals. Furthermore, inter-study distances between homologous tissues were generally less than intra-study distances among different tissues, enabling informative meta-analyses. Notably, when comparing expression divergence of tissues over time to expression variation across 51 human GTEx tissues, we could accurately predict the clustering of expression for arbitrary pairs of tissues and species.

CONCLUSIONS

These results provide a framework for the design of future evolutionary studies of gene expression and demonstrate the utility of comparing RNA-seq data across studies.

摘要

背景

基因表达的差异驱动了物种间的表型差异,但主要器官和组织通常具有保守的基因表达程序。多项比较转录组学研究发现,不同脊椎动物物种的同源组织之间的基因表达比同一物种的不同组织之间的基因表达具有更高的相似性。然而,林及其同事最近的一项研究得出了相反的结论。这些研究在分析的物种和组织以及文库制备、测序、读段比对、标准化、基因集和聚类方法的技术细节方面存在差异。

结果

为了更好地理解基因表达的进化,我们重新分析了四项研究的数据,包括林的研究,使用标准化的比对、标准化和聚类方法,对11种脊椎动物物种的6 - 13个组织进行了分析。对独立数据的分析表明,林等人选择的组织集彼此之间比以前的研究分析的组织更相似。比较四项研究中五个常见组织的表达情况,我们观察到样本仅按组织聚类,而不是按物种或研究聚类,这支持了哺乳动物器官生理学的保守性。此外,同源组织之间的研究间距离通常小于不同组织之间的研究内距离,从而能够进行有意义的荟萃分析。值得注意的是,当比较组织随时间的表达差异与51个人类GTEx组织的表达变异时,我们可以准确预测任意组织对和物种的表达聚类情况。

结论

这些结果为未来基因表达进化研究的设计提供了一个框架,并证明了跨研究比较RNA-seq数据的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ceb/4699362/5950719a5f09/13059_2015_853_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验