Suppr超能文献

使用结构方程模型检测离散变量中的反应转移和真实变化:应用于SF-36量表项目

Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36.

作者信息

Verdam Mathilde G E, Oort Frans J, Sprangers Mirjam A G

机构信息

Department of Medical Psychology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Department of Child Development and Education, University of Amsterdam, Postbus 15776, 1001 NG, Amsterdam, The Netherlands.

出版信息

Qual Life Res. 2016 Jun;25(6):1361-83. doi: 10.1007/s11136-015-1195-0. Epub 2015 Dec 22.

Abstract

PURPOSE

The structural equation modeling (SEM) approach for detection of response shift (Oort in Qual Life Res 14:587-598, 2005. doi: 10.1007/s11136-004-0830-y ) is especially suited for continuous data, e.g., questionnaire scales. The present objective is to explain how the SEM approach can be applied to discrete data and to illustrate response shift detection in items measuring health-related quality of life (HRQL) of cancer patients.

METHODS

The SEM approach for discrete data includes two stages: (1) establishing a model of underlying continuous variables that represent the observed discrete variables, (2) using these underlying continuous variables to establish a common factor model for the detection of response shift and to assess true change. The proposed SEM approach was illustrated with data of 485 cancer patients whose HRQL was measured with the SF-36, before and after start of antineoplastic treatment.

RESULTS

Response shift effects were detected in items of the subscales mental health, physical functioning, role limitations due to physical health, and bodily pain. Recalibration response shifts indicated that patients experienced relatively fewer limitations with "bathing or dressing yourself" (effect size d = 0.51) and less "nervousness" (d = 0.30), but more "pain" (d = -0.23) and less "happiness" (d = -0.16) after antineoplastic treatment as compared to the other symptoms of the same subscale. Overall, patients' mental health improved, while their physical health, vitality, and social functioning deteriorated. No change was found for the other subscales of the SF-36.

CONCLUSION

The proposed SEM approach to discrete data enables response shift detection at the item level. This will lead to a better understanding of the response shift phenomena at the item level and therefore enhances interpretation of change in the area of HRQL.

摘要

目的

用于检测反应转移的结构方程模型(SEM)方法(奥尔特,《生活质量研究》,2005年,第14卷,第587 - 598页。doi: 10.1007/s11136 - 004 - 0830 - y)特别适用于连续数据,例如问卷调查量表。当前目标是解释如何将SEM方法应用于离散数据,并说明在测量癌症患者健康相关生活质量(HRQL)的项目中检测反应转移的情况。

方法

用于离散数据的SEM方法包括两个阶段:(1)建立代表观察到的离散变量的潜在连续变量模型,(2)使用这些潜在连续变量建立用于检测反应转移和评估真实变化的共同因素模型。通过485名癌症患者的数据说明了所提出的SEM方法,这些患者在开始抗肿瘤治疗前后使用SF - 36量表测量了HRQL。

结果

在心理健康、身体功能、因身体健康导致的角色限制和身体疼痛等分量表的项目中检测到了反应转移效应。重新校准反应转移表明,与同一分量表的其他症状相比,抗肿瘤治疗后患者在“洗澡或穿衣”方面的限制相对较少(效应量d = 0.51),“紧张”程度较低(d = 0.30),但“疼痛”较多(d = - 0.23),“幸福感”较低(d = - 0.16)。总体而言,患者的心理健康有所改善,而其身体健康、活力和社会功能有所恶化。SF - 36的其他分量表未发现变化。

结论

所提出的用于离散数据的SEM方法能够在项目层面检测反应转移。这将有助于更好地理解项目层面的反应转移现象,从而加强对HRQL领域变化的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cee/4870306/04aaa973777c/11136_2015_1195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验