Flora David B, Curran Patrick J
Department of Psychology, Arizona State University, Tempe, AZ, USA.
Psychol Methods. 2004 Dec;9(4):466-91. doi: 10.1037/1082-989X.9.4.466.
Confirmatory factor analysis (CFA) is widely used for examining hypothesized relations among ordinal variables (e.g., Likert-type items). A theoretically appropriate method fits the CFA model to polychoric correlations using either weighted least squares (WLS) or robust WLS. Importantly, this approach assumes that a continuous, normal latent process determines each observed variable. The extent to which violations of this assumption undermine CFA estimation is not well-known. In this article, the authors empirically study this issue using a computer simulation study. The results suggest that estimation of polychoric correlations is robust to modest violations of underlying normality. Further, WLS performed adequately only at the largest sample size but led to substantial estimation difficulties with smaller samples. Finally, robust WLS performed well across all conditions.
验证性因素分析(CFA)被广泛用于检验有序变量(如李克特式项目)之间的假设关系。一种理论上合适的方法是使用加权最小二乘法(WLS)或稳健加权最小二乘法将CFA模型拟合到多相关系数上。重要的是,这种方法假设一个连续的、正态的潜在过程决定每个观察变量。违反这一假设对CFA估计的破坏程度尚不清楚。在本文中,作者通过计算机模拟研究对这一问题进行了实证研究。结果表明,多相关系数的估计对于潜在正态性的适度违反具有稳健性。此外,WLS仅在最大样本量时表现良好,但在较小样本量时会导致大量估计困难。最后,稳健WLS在所有条件下都表现良好。