Suppr超能文献

杨树锈病菌落叶松杨栅锈菌分泌蛋白组中的效应子挖掘

Effector-Mining in the Poplar Rust Fungus Melampsora larici-populina Secretome.

作者信息

Lorrain Cécile, Hecker Arnaud, Duplessis Sébastien

机构信息

INRA, UMR 1136 Interactions Arbres/Microorganismes INRA/Université de Lorraine, Centre INRA Nancy Lorraine , Champenoux, France ; Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes Université de Lorraine/INRA, Faculté des Sciences et Technologies , Vandoeuvre-lès-Nancy, France.

出版信息

Front Plant Sci. 2015 Dec 15;6:1051. doi: 10.3389/fpls.2015.01051. eCollection 2015.

Abstract

The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant-parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins (CSEPs) is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogs of more than a thousand secreted proteins. Automatized effector-mining pipelines hold great promise for rapid and systematic identification and prioritization of CSEPs for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors from this species.

摘要

杨树锈病菌(Melampsora larici-populina)已被确立为一种树木与微生物相互作用的模型。了解控制病原体感染的分子机制对于人工林的可持续管理似乎至关重要。在活体营养型植物寄生虫中,效应子已知可调控宿主细胞定殖。因此,研究候选分泌效应子蛋白(CSEP)是杨树 - 杨树锈菌相互作用研究的一个主要目标。与卵菌不同,真菌效应子不具有保守基序,候选效应子的预测依赖于从已报道的真正效应子中建立的一组先验标准。杨树锈病菌的分泌蛋白组预测、基因家族的全基因组分析和转录组学研究已经产生了包含一千多种分泌蛋白的目录。自动化效应子挖掘流程对于快速、系统地鉴定CSEP并对其进行功能表征的优先级排序具有很大的前景。在这篇综述中,我们报告并讨论了杨树锈病菌分泌蛋白组的现状以及该物种候选效应子的预测情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d528/4678189/d66cf02c867e/fpls-06-01051-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验