Woods I G, Imam F B
Department of Biology, Ithaca College, Ithaca, NY, USA.
Department of Pediatrics, Division of Neonatology, University of California San Diego School of Medicine, La Jolla, CA, USA ; Rady Children's Hospital-San Diego, USA.
Genom Data. 2015 Aug 4;6:83-8. doi: 10.1016/j.gdata.2015.07.025. eCollection 2015 Dec.
Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015) in G3: Genes | Genomes | Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.
缺氧在人类早期发育和成年期都会导致严重的细胞损伤,进而引发脑瘫、中风和心肌梗死。有趣的是,当短暂暴露于缺氧环境可保护靶器官免受随后的严重缺氧影响时,一种被称为缺氧预处理的显著现象就会出现。尽管缺氧预处理已在包括心脏和大脑在内的多种模式生物和组织中得到证实,但其分子机制仍知之甚少。因此,我们利用斑马鱼胚胎和幼体开发了一种用于缺氧预处理的新型脊椎动物模型,并利用该模型鉴定保守的缺氧调节转录本,以便进行进一步的功能研究,相关研究成果发表于曼琴科夫等人(2015年)在《G3:基因|基因组|遗传学》上发表的文章。在这篇简讯中,我们对斑马鱼中受缺氧调控最强的基因进行了广泛注释,包括它们的人类直系同源基因,并详细描述了用于识别、筛选和注释缺氧调节转录本的方法,以便使用基因表达综合数据库登录号GSE68473中提供的源数据进行下游功能和生物信息学分析。