Veazey Ronald S, Siddiqui Asna, Klein Katja, Buffa Viviana, Fischetti Lucia, Doyle-Meyers Lara, King Deborah F, Tregoning John S, Shattock Robin J
a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA.
b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.
Hum Vaccin Immunother. 2015;11(12):2913-22. doi: 10.1080/21645515.2015.1070998.
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
将疫苗抗原递送至粘膜表面可能非常具有吸引力,特别是因为对粘膜感染的保护可能由局部免疫反应介导。然而,迄今为止,粘膜免疫的成功有限,存在安全性和免疫原性差的问题。一种提高免疫原性的方法是开发在粘膜表面有效且安全的佐剂。小鼠和人类之间免疫反应的差异夸大了一些实验性佐剂的价值,这些佐剂随后在临床上表现不佳。由于非人类灵长类动物与人类更为相似,它们可以提供更准确的佐剂性能情况。在本研究中,我们使用独特的矩阵实验设计对恒河猴(猕猴)进行免疫,该设计在减少动物使用量的同时最大化了筛选的佐剂数量。将恒河猴通过鼻内、舌下和直肠内途径用模型蛋白抗原钥孔戚血蓝蛋白(KLH)、β-半乳糖苷酶(β-Gal)和卵清蛋白(OVA)与实验性佐剂聚肌苷酸-聚胞苷酸(Poly(I:C))、Pam3CSK4、壳聚糖、胸腺基质淋巴细胞生成素(TSLP)、单磷酰脂质A(MPLA)和R848(瑞喹莫德)联合免疫。在所使用的途径中,只有用KLH和R848进行鼻内免疫诱导了可检测到的抗体反应。与肌肉内免疫相比,鼻内给药在血浆中产生的抗原特异性抗体水平略低,但增强了局部反应。在鼻内递送R848后,我们观察到轻度炎症反应,但与对照组无差异。由此我们得出结论,R848能够增强对粘膜递送抗原的抗体反应,而不会引起过度的局部炎症。